版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七讲地面观测元素归算至椭球面大地主题解算钱如友滁州学院地理信息与旅游学院
意义
要求为在椭球面上的计算提供观测元素。以椭球面法线为基准线以椭球面为基准面椭球面两点连线用大地线
内容回顾一、归算的意义和要求
垂线偏差改正法线垂线照准线度盘零线大地水平面计算:量级:一般情况下,垂线偏差的量级约几秒到十几秒,垂直角的量级约为几度,故垂线偏差改正通常约十分之几秒。应用范围:一、二等三角测量,三四等酌情。内容回顾二、水平观测方向归算至椭球面(三差改正)
标高差改正计算:量级:一般情况:全球最大值为0.75"通常为百分之几秒。应用范围:一、二等三角测量,三四等酌情。内容回顾二、水平观测方向归算至椭球面(三差改正)
截面差改正ABNA1'A1δ3计算:量级:一般情况:千分之几秒应用范围:一等三角测量,二至四等不加。内容回顾二、水平观测方向归算至椭球面(三差改正)垂线偏差改正标高差改正截面差改正一等二等三等四等加加加三差改正加加不加不加不加酌情酌情酌情酌情内容回顾二、水平观测方向归算至椭球面(三差改正)确定水平坐标的流程已知坐标(L,B)地面上观测元素布设水平控制网观测平差大地坐标(L,B)推算归算椭球面上的元素水平方向垂直角地面距离大地经纬度大地方位角平面坐标(X,Y)已知坐标(X,Y)高斯平面的元素归算平差推算水平方向垂直角地面距离平面方位角水平方向垂直角地面距离天文经纬度天文方位角水平坐标内容回顾确定水平坐标的流程一、归算的意义和要求二、水平观测方向归算至椭球面三、地面观测长度归算至椭球面四、天文经纬度与大地经纬度的关系五、天文方位角与大地方位角的关系2.3.5地面观测元素归算至椭球面[公式推导及思路][定义]将地面两点间的直线斜距归算为椭球面上两点投影点间的大地线长。近似公式严密公式二、地面观测长度归算至椭球面Reductionofobservedlength[公式推导及思路]近似公式四、地面观测长度归算至椭球面Reductionofobservedlength[计算公式:小于60km的精密公式,精确到1mm]D
—观测斜距,取至0.001m;H1、H2
—测距边两端的大地高,取至0.001m;B
—测距边起点的大地纬度,取至整分;A—测距边的大地方位角,取至整分;S
—斜距归算至椭球面的大地线长,取至0.001m。仪器高棱镜高四、地面观测长度归算至椭球面Reductionofobservedlength2.3.6椭球面三角形的解算
经过研究表明,当三角形的边长小于200公里时,将椭球面三角形看作以其三个顶点平均纬度处的平均曲率半径为球半径的球面三角形是完全可以的(两者对应边长相等,对应角之差小于0".001)。椭球面三角形(边长<200km)以Rm为半径的球面三角形2.3.6椭球面三角形的解算
设一球面三角形A0B0C0,其三边长为a、b、c,球面角超为ε
。如果以同样边长a、b、c为三边作一平面三角形A1B1C1,当边长不甚大时,可以证明这两个三角形的三内角间有如下的关系:其中,∆为平面三角形的面积,R为球的半径。1、勒让德定理A0B0C0abcA0B0C0abcA1B1C1abc椭球面三角形以Rm为半径的球面三角形虚拟平面三角形2、勒让德定理的应用-推算椭球面三角形边长解算步骤确定水平坐标的流程已知坐标(L,B)地面上观测元素布设水平控制网观测平差大地坐标(L,B)推算归算椭球面上的元素水平方向垂直角地面距离大地经纬度大地方位角平面坐标(X,Y)已知坐标(X,Y)高斯平面的元素归算平差推算水平方向垂直角地面距离平面方位角水平方向垂直角地面距离天文经纬度天文方位角水平坐标确定水平坐标的流程1、已知1、2两点的大地经纬度B、L
,如何获得椭球面两点间的大地线长、大地方位角?大地问题反解2.4大地主题解算2、已知1点的大地经纬度B1、L1
,1、3两点间的大地线长、大地方位角,如何3点的大地经纬度B3、L3
?大地问题正解2.4大地主题解算意义:①推算未知点的大地坐标;②为远程武器提供定位、定向、导航数据。
在椭球面上推算点的大地坐标,或者根据两点的大地坐标计算大地线长和大地方位角,这样的计算问题就叫做大地问题解算。又叫大地主题解算、大地坐标计算、或大地位置计算。
实质:大地坐标与大地极坐标的相互化算。2.4.1大地问题解算概述solutionofgeodeticproblem已知P1点的大地坐标(L1,B1),P1至P2点的大地线长S和大地方位角A1,要求算出P2点的大地坐标(L2,B2)及大地线在P2点处的反方位角A2,即:L1,B1,S,A1L2,B2,A2大地问题正解directsolutionofgeodeticproblem已知P1点和P2点的大地坐标(L1,B1)、(L2,B2),计算两点间的大地线长S及正反大地方位角A1、A2。即:L1,B1,L2,B2S,A1,A2大地问题反解inversesolutionofgeodeticproblem1、解算公式短距离(<400km)中距离(400km~1000km)长距离(1000km~20000km)解算距离精密公式近似公式解算精度幂级数形式投影形式解算途径大地线微分方程大地线的克莱劳方程1、解算公式
幂级数形式:利用椭球面上大地线及其三个微分方程为基础,将大地线两端点的大地经差(l)、大地纬差(b)和大地方位角差(a)展开为大地线长度S的升幂级数式。这类公式的特点在于:解算精度与距离有关,距离越长,收敛越慢,甚至不收敛而不能解。因此,这类方法适用于短距离。代表公式:勒让德级数、高斯平均引数公式
以大地线在大地坐标系中的微分方程为基础,直接在地球椭球面上进行积分运算。
勒让德级数
一阶导数推导大地线微分方程类似:二阶导数……
三阶导数……
代入,即得勒让德级数说明:⑴大地主题正算的一组公式,适用于边长小于30km;⑵1806年勒让德提出的;⑶以大地线端点为出发点展开的,级数收敛慢,计算不方便;⑷1846年高斯进行了改化,以大地线中点为出发点展开的。高斯平均引数基本思想:⑴在大地线中点M展开,收敛快,精度高;⑵中点M不好求,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢琴音乐制品音乐教室师资合作合同
- 城市更新项目回迁房买卖
- 创业公司对赌协议范本
- 酒肉朋友的虚伪与险恶
- 购销合同范本及注意事项
- 个人劳务分包合同协议书样式
- 瓷砖代购销合同
- 工厂搬运吊装劳务合作
- 苗木购销协议
- 深入了解劳动合同与劳动协议的差异
- 配网规划建设汇报
- 大学生个人职业生涯规划课件模板
- 中国税制学习通超星期末考试答案章节答案2024年
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- 期末 (试题) -2024-2025学年教科版(广州)英语四年级上册
- 2024消防维保投标文件模板
- 高级流行病学与医学统计学智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 设计创意生活智慧树知到期末考试答案2024年
- 北京市西城区2023-2024学年八年级上学期期末数学检测卷(含答案)
- 道路运输企业两类人员安全考核题库题库(1020道)
- 【机械毕业论文】便携式电火花小孔机结构设计
评论
0/150
提交评论