版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,且,则的取值范围为()A. B. C. D.2.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且3.设,则A. B. C. D.4.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.5.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.6.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.27.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.8.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.9.函数的部分图象大致为()A. B.C. D.10.执行如图所示的程序框图,则输出的的值为()A. B.C. D.11.对于任意,函数满足,且当时,函数.若,则大小关系是()A. B. C. D.12.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最大值为________.14.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.15.在中,内角的对边分别是,若,,则____.16.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆C:x24+y2=1,F为其右焦点,直线l:y=kx+m(km<0)与椭圆交于P(x1(I)试用x1表示|PF|(II)证明:原点O到直线l的距离为定值.18.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.19.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.(1)求证:;(2)设平面与交于点,求证:为的中点.20.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.21.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.22.(10分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.2.D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.3.C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4.B【解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.5.B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.6.A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.7.C【解析】
由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.8.C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.9.B【解析】
图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。10.B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.11.A【解析】
由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..12.A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.14.【解析】
计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.【详解】由()•()=0可得()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.再由2•1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案为.【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.15.【解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16.【解析】
由题意容积,求导研究单调性,分析即得解.【详解】由题意:容积,,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(I)|FP|=2-32x【解析】
(I)直接利用两点间距离公式化简得到答案.(II)设Ax3,y3,Bx4【详解】(I)椭圆C:x24|FP|=x(II)设Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2⋅故原点O到直线l的距离为d=m【点睛】本题考查了椭圆内的线段长度,定值问题,意在考查学生的计算能力和综合应用能力.18.(1)见解析;(2).【解析】试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系(如图),则各点坐标为.设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.19.(1)证明见解析;(2)证明见解析.【解析】
(1)要做证明,只需证明平面即可;(2)易得∥平面,平面,利用线面平行的性质定理即可得到∥,从而获得证明【详解】证明:(1)因为平面,平面,所以.因为,所以.又因为,平面,平面,所以平面.又因为平面,所以.(2)因为平面与交于点,所以平面.因为分别为的中点,所以∥.又因为平面,平面,所以∥平面.又因为平面,平面平面,所以∥,又因为是的中点,所以为的中点.【点睛】本题考查线面垂直的判定定理以及线面平行的性质定理,考查学生的逻辑推理能力,是一道容易题.20.(1)单调递减区间为,单调递增区间为;(2)【解析】
(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时,函数,若时,此时对任意都有,所以恒成立;若时,对任意都有,,所以,所以在上为增函数,所以,即时满足题意;若时,令,则,所以在上单调递增,,,可知,一定存在使得,且当时,,所以在上,单调递减,从而有时,,不满足题意;综上可知,实数a的取值范围为.解法二:当时,函数,又当时,,对一切恒成立等价于恒成立,记,其中,则,令,则,在上单调递增,,恒成立,从而在上单调递增,,由洛比达法则可知,,,解得.实数a的取值范围为.【点睛】本题考查利用导数研究函数的单调性与不等式恒成立问题,考查了分类与整合的解题思想,涉及分离参数法等技巧、涉及到洛比达法则等知识,注意解题方法的积累,属于难题.21.(1);(2).【解析】
(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得:,且为锐角(2)【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.22.(1)见解析(2)见解析【解析】
(1)求得函数的定义域和导函数,对分成三种情况进行分类讨论,判断出的极值点个数.(2)由(1)知,结合韦达定理求得的关系式,由此化简的表达式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字艺术教育创新-洞察分析
- 水陆联运技术集成-洞察分析
- 药物作用靶点验证技术-洞察分析
- 营养素与环境关系研究-洞察分析
- 网络艺术市场分析-洞察分析
- 新能源车辆在物流业的应用-洞察分析
- 从社交平台到市场爆款的地铁文创产品设计秘诀
- 办公空间绿色改造的实践与思考
- 养老院装修设计与老年人生活品质提高
- 企业如何在展会中展现专业品牌形象
- 强力皮带运行危险点分析及预控措施
- 基于STM32的可遥控智能跟随小车的设计与实现-设计应用
- 爱国人物的历史故事整理
- 天然药物化学智慧树知到答案章节测试2023年中国药科大学
- 基于关联规则数据挖掘算法的研究共3篇
- 马克思主义基本原理试题及答案(超星学习通)
- 产品生产完工报告单格式
- 2023年单位机构编制工作调研报告七篇
- 经济博弈论(谢织予)课后答案及补充习题答案
- 供热管线直埋供热管道施工方案-正式版
- GB/T 30325-2013精装书籍要求
评论
0/150
提交评论