版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章维纳滤波
〔WienerFiltering〕王静生物医学工程系1a本章内容:5.1维纳滤波器的时域解5.2维纳预测器5.3维纳滤波器的应用2a引言〔1〕维纳维纳于1894年生于美国密苏里州哥伦比亚市的一个犹太人的家庭中。他18岁就获得哈佛大学数学和哲学两个博士学位,是信息论的前驱和控制论的奠基人。
3a维纳:开创维纳信息论他从带直流电流或者至少可看作直流电流的电路出发来研究信息论,将统计方法引入通讯工程,奠定了信息论的理论根底。创立控制论1947年10月,维纳写出了划时代的著作?控制论?,1948年出版后,立即风行世界。它揭示了机器中的通信和控制机能与人的神经、感觉机能的共同规律;为现代科学技术研究提供了崭新的科学方法。4a引言在前面章节中已经介绍了噪声中确定性信号的检测和估计;随机性是生物医学信号的特点之一,因此,讨论噪声中随机信号的估计具有现实意义。维纳滤波器正是解决该问题。维纳滤波器的限制:要求被估计的随机信号是平稳的。5a〔2〕维纳滤波技术:从噪声中提取有用的平稳随机信号。h(n)x(n)=s(n)+w(n)y(n)=6a7a8a根底知识点回忆1.卷积运算2.相关运算3.信号与系统9a设有一个线性系统,它的单位脉冲响应是h(n),当输入一个观测到的随机信号x(n),简称观测值,且该信号包含噪声w(n)和有用信号s(n),也即x(n)=s(n)+w(n)那么输出y(n)为y(n)=x(n)*h(n)=
10a我们希望输出得到的y(n)与有用信号s(n)尽量接近,因此称y(n)为s(n)的估计值,用来表示y(n),我们就有了维纳滤波器的系统框图.这个系统的单位脉冲响应也称为对于s(n)的一种估计器。h(n)x(n)=s(n)+w(n)y(n)=11a维纳滤波技术可应用于以下三个方面:滤波:用当前的和过去的观测值来估计当前的信号,称为滤波;预测:用过去的观测值来估计当前的或将来的信号,称为预测;平滑或内插:用过去的观测值来估计过去的信号,称为平滑或者内插。12a系统框图中估计到的信号和我们期望得到的有用信号s(n)不可能完全相同,这里用e(n)来表示真值和估计值之间的误差
h(n)x(n)=s(n)+w(n)y(n)=显然e(n)是随机变量,维纳滤波和卡尔曼滤波的误差准那么就是最小均方误差准那么
13a5.1维纳滤波器的时域解
〔TimedomainsolutionoftheWienerfilter〕设计维纳滤波器的过程就是寻求在最小均方误差下滤波器的单位脉冲响应h(n)或传递函数H(z)的表达式,其实质就是解维纳-霍夫〔Wiener-Hopf〕方程。
14a5.1.1因果的维纳滤波器,即维纳-霍夫方程
5.1.2有限脉冲响应法求解维纳-霍夫方程
5.1.3预白化法求解维纳-霍夫方程15a因果的维纳滤波器设h(n)是物理可实现的,也即是因果序列:h(n)=0,当n<0
16a要使得均方误差最小,那么将上式对各h(m),m=0,1,…,求偏导,并且等于零,得: (5-7)即 (5-8) (5-9)17a从维纳-霍夫方程中解出的h就是最小均方误差下的最正确h,hopt(n)。求到hopt(n),这时的均方误差为最小:18a有限脉冲响应法求解维纳-霍夫方程
设h(n)是一个因果序列且可以用有限长〔N点长〕的序列去逼进它,那么式(5-5)-(5-10)分别发生变化: (5-11) (5-12)
(5-13)19a
(5-14) (5-15)于是得到N个线性方程:
20a写成矩阵形式有:
(5-16)简化形式:
RxxH=Rxs(5-17)
式中,H=[h(0)h(1)…h(N-1)]′是待求的单位脉冲响应:21aRxxH=Rxs
只要Rxx是非奇异的,就可以求到H:
H=Rxx-1Rxs
(5-18)求得hopt(n)后,这时的均方误差为最小:
22a23a假设信号与噪声互不相关,即,Rsw(m)=Rws(m)=0那么有Rxs(m)=E[x(n)s(n+m)]=E[(s(n)+w(n))s(n+m)]=E[s(n)s(n+m)+w(n)s(n+m)]=Rss(m)Rxx(m)=E[(s(n)+w(n))(s(n+m)+w(n+m))]=Rss(m)+Rww(m)24a那么式〔5-15〕和式〔5-19〕化为: (5-20) (5-21)【例5-1】如图,x(n)=s(n)+w(n),且s(n)与w(n)统计独立,其中s(n)的自相关序列 ,w(n)是方差为1的单位白噪声,试设计一个N=2的维纳滤波器来估计s(n),并求最小均方误差。25a解:依题意,信号的自相关和噪声的自相关为:代入式〔5-20〕得:解得:h(0)=,h(1)=。将上述结果代入式〔5-21〕,求得最小均方误差:h(n)x(n)=s(n)+w(n)y(n)=26a5.1.1因果的维纳滤波器,即维纳-霍夫方程
5.1.2有限脉冲响应法求解维纳-霍夫方程
5.1.3预白化法求解维纳-霍夫方程27ah(n)x(n)=s(n)+w(n)y(n)=G(z)x(n)y(n)=1/B(z)w1(n)28a预白化法求解维纳-霍夫方程
随机信号都可以看成是由一白色噪声w1(n)鼓励一个物理可实现的系统或模型的响应,如下图.
图5.2s(n)的信号模型A(z)w1(n)s(n)29a由于x(n)=s(n)+w(n),在图的根底上给出x(n)的信号模型,图所示。把这两个模型合并最后得到维纳滤波器的信号模型,图所示,其中传递函数用B〔z〕表示。
图5.3x(n)的信号模型s(n)A(z)w1(n)w(n)x(n)30a维纳滤波器的输入信号模型B(z)w1(n)x(n)31a白噪声的自相关函数为它的z变换就等于。图中输出信号的自相关函数为,根据卷积性质有令l=r-k,上式32a令代入上式得
(5-22)对式〔5-22〕进行Z变换得到系统函数和相关函数的z变换之间的关系: (5-23)同样,对图进行z变换得 (5-24)33a图中利用卷积性质还可以找到互相关函数之间的关系:
两边z变换得到
(5-25)
34a如果观测信号的自相关函数,求它的z变换,然后找到该函数的成对零点、极点,取其中在单位圆内的那一半零点、极点构成B(z),另外在单位圆外的零、极点构成B(z-1),这样就保证了B(z)是因果的,并且是最小相位系统。从图可得(5-26)35a由于系统函数B(z)的零点和极点都在单位圆内,即是一个物理可实现的最小相位系统,那么1/B(z)也是一个物理可实现的最小相移网络函数。我们就可以利用式〔5-25〕对x(n)进行白化,即把x(n)当作输入,w1(n)当作输出,1/B(z)系统传递函数。36ah(n)x(n)=s(n)+w(n)y(n)=G(z)x(n)y(n)=1/B(z)w1(n)H(z)=G(z)/B(z)37a白化法求解维纳-霍夫方程步骤如下:1〕对观测信号x(n)的自相关函数Rxx(m)求z变换得到Rxx(z)2〕利用等式找到最小相位系统B(z)3〕利用均方误差最小原那么求解因果的G〔z〕4〕H(z)=G(z)/B(z),即得到维纳-霍夫方程的系统函数解38a步骤3的求解过程按图〔b〕有 (5-28)均方误差为39a由于代入上式,并且进行配方得
(5-29)
均方误差最小也就是上式的中间一项最小,所以
(5-30)40a注意,这里的g(m)是因果的。对该式求z变换,得到
(5-31)
表示对求单边z变换。所以维纳-霍夫方程的系统函数解表示为41a由式
(5-32)因果的维纳滤波器的最小均方误差为:
(5-33)42a利用帕塞伐尔定理,上式可用z域来表示
(5-34)例5-2。。。见书43a5.2.1因果的维纳预测器5.2.2纯预测器〔N步〕5.2.3一步线性预测器5.2维纳预测器44a因果的维纳预测器图就是维纳预测器的模型,N>0,yd(n)是希望得到的输出,而y(n)表示实际的估计值。
图维纳预测器y(n)=yd(n)=h(n)x(n)=s(n)+w(n)45a设h(n)是物理可实现的,也即是因果序列:h(n)=0,当n<0,那么有
(5-35)
(5-36)要使得均方误差最小,那么将上式对各h(m),m=0,1,…,求偏导,并且等于零,得:46a
(5-37)即用相关函数R来表达上式: (5-39)由yd(n)=s(n+N),那么47az变换得
(5-40)因果的预测器的传递函数为:
(5-41)最小均方误差为
(5-42)48a利用帕塞伐尔定理,上式可用z域来表示
(5-43)49a例5-3图中,x(n)=s(n)+w(n),且s(n)与w(n)统计独立,其中s(n)的自相关序列为,w(n)是方差为1的单位白噪声,试设计一个物理可实现的维纳预测器估s(n+1),并求最小均方误差。解:依题意50a求z变换
由于,容易找到最小相位系统和白噪声方差
51a由式〔5-41〕,N=1,
对括号里面求z反变换,注意括号内的收敛域为
52a取因果局部,也就是第一项,所以
把上式写成差分方程形式有:53a最小均方误差为:54a纯预测器〔N步〕纯预测器指的是w(n)=0的情况下,对s(n+N)的预测。如下图。
图5.7N步纯预测器这时,用白化法来求解预测器的系统函数。y(n)=yd(n)=h(n)x(n)=s(n)55a因为,从而有 (5-44)将上式代入式〔5-41〕、〔5-43〕得
(5-45)56a假设B〔z〕是b〔n〕的z变换,且b〔n〕是实序列,那么上式可以利用帕塞伐尔定理进一步化简:上式说明最小均方误差随着N的增加而增加,也即预测距离越远误差越大。57a例5-4图中,x(n)=s(n)其中s(n)的自相关序列为,试设计一个物理可实现的维纳预测器来估计,并求最小均方误差。解:依题意,,那么
58a因为容易找到最小相位系统和白噪声方差利用式〔5-45〕59a因为只取的局部,有代入得:最小均方误差为:60a它说明当N越大,误差越大,当N=0时,没有误差
图5.8例题5-3的纯预测模型y(n)==x(n)=s(n)61a一步线性预测器对于纯预测问题,有
然而预测的问题常常是要求在过去的p个观测值的根底上来预测当前值,也就是这就是一步线性预测公式62a一步线性预测公式,常常用以下符合表示(5-48)式中p为阶数,。预测的均方误差为
(5-49)63a要使得均方误差最小,将上式右边对求偏导并且等于零,得到p个等式: (5-50)最小均方误差: (5-51)式〔5-50〕就是Yule-Walker〔Y-W〕方程.64a例5-5图中,x(n)=s(n),其中s(n)的自相关序列为,试设计一个p=2的可实现的一步线性预测器,并求最小均方误差。65a解:
利用Y-W方程
可以列出2个方程式66a解得:结果和例〔5-4〕N=1时一致67a维纳滤波器的应用〔ApplicationofWienerfilter〕要设计维纳滤波器必须知道观测信号和估计信号之间的相关函数,即先验知识。如果我们不知道它们之间的相关函数,就必须先对它们的统计特性做估计,然后才能设计出维纳滤波器,这样设计出的滤波器被称为“后验维纳滤波器〞。68a在生物医学信号处理中比较典型的应用就是关于诱发脑电信号的提取。大脑诱发电位〔EvokedPotential,EP〕指在外界刺激下,从头皮上记录到的特异电位,它反映了外周感觉神经、感觉通路及中枢神经系统中相关结构在特定刺激情况下的状态反响。在神经学研究以及临床诊断、手术监护中有重要意义。EP信号十分微弱,一般都淹没在自发脑电〔EEG〕之中,从EEG背景中提取诱发电位一直是个难题:EP的幅度比自发脑电低一个数量级,无法从一次观察中直接得到;EP的频谱与自发脑电频谱完全重迭,使得频率滤波失效;在统计上EP是非平稳的、时变的脑诱发电位。通过屡次刺激得到的脑电信号进行叠加来提取EP,这是现今最为广泛使用的EP提取方法69a为了解决诱发电位提取问题,研究者利用维纳滤波来提高信噪比,先后有Walter、Doyle、Weerd等对维纳滤波方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银川球场施工方案
- 旋喷桩专项施工方案
- 石亭体施工方案
- 智能化维修工具应用研究-深度研究
- 机床交换系统优化-深度研究
- 微纳米药物制剂-深度研究
- 多模态序列分析-深度研究
- 2025年广西经贸职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年广西电力职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- Final关键字与代码可维护性分析-深度研究
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2024年城市轨道交通设备维保及安全检查合同3篇
- 【教案】+同一直线上二力的合成(教学设计)(人教版2024)八年级物理下册
- 湖北省武汉市青山区2023-2024学年七年级上学期期末质量检测数学试卷(含解析)
- 单位往个人转账的合同(2篇)
- 科研伦理审查与违规处理考核试卷
- GB/T 44101-2024中国式摔跤课程学生运动能力测评规范
- 高危妊娠的评估和护理
- 2024年山东铁投集团招聘笔试参考题库含答案解析
- 儿童10岁生日-百日宴-满月酒生日会成长相册展示(共二篇)
- 2023年高考全国甲卷数学(理)试卷【含答案】
评论
0/150
提交评论