版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.1平面直角坐标系
(第2课时)问题1
回顾已学内容,回答下列问题:(1)什么是数轴?请画出一条数轴.(2)如图,A,B两点所表示的数分别是什么?在数轴上描出“-3”表示的点.复习引入数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A的坐标为-4,点B的坐标为2.反之,已知数轴上点的坐标,这个点的位置就确定了.问题2在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?复习引入数轴上的点与坐标是“一一对应”的.也就是说,在数轴上每一个点都可以用一个坐标来表示,任何一个坐标都可以在数轴上找到唯一确定的点.问题3类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图,你能找到一种办法来确定平面内点P的位置吗?形成概念点P所在的平面内有一些方格线,利用上节课所学的有序数对,约定“列数在前,排数在后”.如图,点P在“第1列第2排”,记为(1,2).形成概念追问在图中,点P记为(1,2),类比点P,你能分别写出点M,N分别记为什么吗?M记为(-2,-2);N记为(-1,3).问题3你能找到办法来确定平面内点P的位置吗?
形成概念问题3追问2
根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响吗?
形成概念
法国数学家笛卡儿设想将几何问题数量化,从而使其变成一个代数问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的,由此诞生了一门新的数学分支──解析几何.这好像在被一条大河隔开的代数和几何的两岸,架起了一座桥梁,把“数”与“形”联系起来,引起了数学的深刻革命.恩格斯称解析几何的诞生是数学发展的一个转折点.笛卡儿的这种思想,尤其在高速计算机出现的今天,具有深远意义.问题4如图,学生看书第66,67页后回答下列问题:①说一说组成平面直角坐标系的两条数轴具备什么特征?②什么是横轴?什么是纵轴?什么是坐标原点?形成概念平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴.
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向.两坐标轴的交点为平面直角坐标系的原点.
形成概念问题5在平面直角坐标系中,能用有序数对来表示图(1)中点A的位置吗?形成概念由点A分别向x轴,y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.问题5追问1如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?形成概念答:B(-2,3),C(4,-3),D(-1,-4).例在平面直角坐标系中描出下列各点:
A(4,5),B(-2,3),C(-4,-1),
D(3,0),K(0,-4).形成概念描出点A的方法:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.问题6
数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?形成概念数轴上的点与坐标(实数)一一对应.用类比的方法得到平面上的点与坐标(有序实数对)也是一一对应的.巩固新知1.选择题.(1)已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(0,3)C.(0,3)或(0,-3)D.(3,0)或(-3,0)(2)如果(3,2)表示第三排二号位,则(18,5)表示的意义是()5排18号;(B)18排5号;(C)5排或者说18排;(D)18号或5号。巩固新知3填空题剧场里6排4号可用(6,4)表示,则5排1号可表示为______.地球表面某一点的位置可以用___线和___线交织的网来确定。A点的坐标是(3,4),则A点的横坐标为___,纵坐标为___.已知点E(a,b)在y轴上,则ab=_____.如果用(7,1)表示七年级一班,那么八年级四班可表示成___.拓展运用画出一个平面直角坐标系,在坐标平面内描出下列各点:A(-1,5),B(-4,2),C(5,2),D(8,5).(1)将A,B,C,D依次用线连结成封闭图形,你会得到一个什么样的图形?它是轴对称图形吗?如果是,请你画出它的对称轴。(2)作出点C,D关于x轴对称点,,将C,D,,依次用线连结起来,你又会得到一个什么样的封闭图形?它是轴对称图形吗?如果是,请你画出它的对称轴。(3)若把四边形ABCD沿y轴翻折,写出各对应点的坐标。回顾本节课所学的主要内容,回答以下问题:(1)什么是平面直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 读书的体会作文400字
- 仪器、设备维修申请单范本
- 大学的学习计划15篇
- 2023四年级语文下册 第3单元 9 短诗三首配套教学实录 新人教版
- 代理成本-详解
- 2024-2025学年高中政治 专题4 4 坚持和完善人民代表大会制度教学实录 新人教版选修3
- 趣味篮球活动方案9篇
- 公司的承诺书合集七篇
- 2024年版民办幼儿园经营管理承包合同版B版
- 前台年度工作总结5篇
- 陈州的励志故事
- 公司报价管理办法
- 试论在地理教学设计中的应用
- 小学劳动教育培训心得体会
- 《眼科常见疾病护理》
- 2023部编人教版八年级上册道德与法治知识点提纲
- 乙肝五项操作规程(胶体金法)
- 15《石狮》(说课稿)- 2022-2023学年美术五年级上册 岭南版
- 医学课件-新生儿腹泻护理查房教学课件
- ROV的结构设计及关键技术研究的任务书
- 2022沪教版小学数学二年级上册期末试卷含部分答案(三套)
评论
0/150
提交评论