2型糖尿病的现代认知与SGLT2抑制剂的作用机制课件_第1页
2型糖尿病的现代认知与SGLT2抑制剂的作用机制课件_第2页
2型糖尿病的现代认知与SGLT2抑制剂的作用机制课件_第3页
2型糖尿病的现代认知与SGLT2抑制剂的作用机制课件_第4页
2型糖尿病的现代认知与SGLT2抑制剂的作用机制课件_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2型糖尿病的现代认知与SGLT2抑制剂的作用机制2型糖尿病的现代认知与SGLT2抑制剂的作用机制1内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D2IDF世界地图(第7版):

全球糖尿病患病人数逐年上升预计的2015和2040年全球不同地区糖尿病患者数量北美和加勒比海欧洲西太平洋东南亚非洲拉丁美洲中东和北非DiabetesAtlas,7thedition,IDF,2015.IDF世界地图(第7版):

全球糖尿病患病人数逐年上升预计的3糖尿病的危害和负担糖尿病广泛流行糖尿病广泛流行带来巨大负担DiabetesAtlas,7thedition,IDF,2015纪立农等.中国糖尿病杂志,2014;22(7):594-598.每11位成年人中就有1位糖尿病患者近70%的中国T2DM患者HbA1c未达标每6秒就有一位患者因糖尿病死亡全球健康支出有12%用于糖尿病糖尿病的糖尿病糖尿病广泛流行带来巨大负担DiabetesA4内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D5DeFronzoRA.Diabetes2009;58:773–795.高血糖胰岛β细胞胰岛素分泌受损胰岛α细胞胰高血糖素分泌增多

葡萄糖重吸收增加肝糖生成增多神经递质功能障碍肠促胰素反应减低脂解作用增强肌肉组织葡萄糖摄取减少糖尿病发病机制:“八重奏”导致高血糖DeFronzoRA.Diabetes2009;58:6糖尿病自然病程:β-细胞功能进行性衰退史临床糖尿病糖尿病前期高胰岛素血症胰岛素抵抗胰岛素分泌异常第一时相分泌消失各种易感基因相互作用环境因素肥胖低体力活动等β-细胞功能(%)糖耐量异常糖尿病期糖尿病诊断时β细胞功能仅剩50%β细胞功能进行性减退,每年约下降4%糖尿病诊断(年)HolmanRR,etal.DiabetesResClinPract.1998Jul;40Suppl:S21-5.八重奏—β细胞糖尿病自然病程:β-细胞功能进行性衰退史临床糖尿病糖尿病前7八重奏—α细胞T2DM患者空腹胰高糖素浓度显著升高MatsudaM,etal.Metabolism.2002Sep;51(9):1111-9.P<0.001pg/ml八重奏—α细胞T2DM患者空腹胰高糖素浓度显著升高Matsu8T2DM患者肝糖生成增加八重奏—肝脏SharabiK,etal.MolAspectsMed.2015Nov5.pii:S0098-2997(15)30005-4.胰岛素抵抗胰岛素分泌相对不足HGP血糖T2DM前期出现胰岛素抵抗,胰岛素代偿性分泌而维持血糖稳态;进展为T2DM时,胰岛β细胞不能继续增加胰岛素分泌,即形成胰岛素分泌相对不足,肝糖(HGP)生成增加,最终导致血糖升高T2DM患者肝糖生成增加八重奏—肝脏SharabiK,e9八重奏—肌肉T2DM患者肌肉组织葡萄糖摄取减少DeFronzoRA.Diabetes2009;58:773–795大腿葡萄糖摄取时间(分)对照组全身葡萄糖摄取(mg/kg·min)对照组八重奏—肌肉T2DM患者肌肉组织葡萄糖摄取减少DeFronz10脂肪代谢紊乱是T2DM糖耐量受损的病理机制八重奏—脂肪DeFronzoRA.Diabetes2009;58:773–795胰岛素抗脂解作用血浆中FFA浓度糖异生胰岛素分泌受损脂肪细胞胰岛素抵抗胰岛素增敏激素,如脂联素炎症反应脂肪存储能力脂肪细胞增大脂肪细胞对胰岛素抗脂解作用的抵抗,使血浆中FFA浓度升高,导致糖异生升高和胰岛素抵抗脂肪细胞增大,使脂肪存储能力下降,脂肪溢出进入肝脏、肌肉、β细胞等部位,诱发这些部位胰岛素抵抗FFA浓度升高和胰岛素抵抗导致糖异生升高,胰岛素分泌受损、胰岛素增敏激素分泌下降,炎症反应升高等,最终导致T2DM糖耐量受损脂肪代谢紊乱是T2DM糖耐量受损的病理机制八重奏—脂肪DeF11八重奏—胃肠肠促胰素GLP-1多重调节机制,降低血糖BaggioLL,etal.Gastroenterology.2007May;132(6):2131-57.

心脏保护作用增加心输出量心脏脑神经保护作用减低食欲肝脏减少肝糖生成减慢胃排空胃肠胰腺脂肪组织肌肉葡萄糖摄取和储存胰岛素敏感性胰岛素分泌胰高糖素分泌胰岛素合成β细胞增殖β细胞凋亡减少八重奏—胃肠肠促胰素GLP-1多重调节机制,降低血糖Bagg12八重奏—胃肠T2DM患者GLP-1分泌显著减少Mean±SE;N=54;*T2DM和NGT组的差别p<.05Toft-NielsenM,etal.JClinEndocrinolMetab.2001;86:3717-3723.该研究为一项随机对照研究,研究纳入54例2型糖尿病患者,15例糖耐量受损的患者,33例糖耐量正常的对照组受试者。用GLP-1的C末端特异性抗体编码方法测定,测定的是GLP-1(7-36)酰胺及其代谢产物GLP-1(9-36)酰胺的总和GLP-1(pmol/L)时间(min)T2DMNGTIGT八重奏—胃肠T2DM患者GLP-1分泌显著减少Mean±13MatsudaM,etal.Diabetes.1999Sep;48(9):1801-6.八重奏—脑葡萄糖摄入一段时间后,下丘脑部分区域受到抑制葡萄糖摄入时间(分)下丘脑核磁共振成像信号强度体胖者体瘦者该研究纳入10例体胖者和10例体瘦者,在受试者摄入食物后,通过核磁共振成像检测下丘脑对食物摄入后的反应该研究结果表明:在葡萄糖摄入后,无论是体胖者或是体瘦者下丘脑都会出现一段时间的抑制效果研究提示:下丘脑部分区域在葡萄糖摄入后一段时间内受到抑制MatsudaM,etal.Diabetes.1914内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D15肾脏负责20%-25%糖原异生糖原异生25%-30%*肝糖原分解45%-50%*糖原异生20%-25%*葡萄糖合成约70g/d*吸收后的状态GerichJE.DiabetMed2010;27:136–42.肾脏负责20%-25%糖原异生,与肝脏糖异生提供葡萄糖等量八重奏—肾脏肾脏负责20%-25%糖原异生糖原异生25%-30%*糖原16肾糖阈指血糖逐渐升高时引起糖尿现象时的血糖浓度,正常值为8.88mmol/L(160-190mg/dL)血糖超出肾糖阈,肾葡萄糖转运体饱和导致糖尿ChaoEC,etal.NatRevDrugDiscov2010;9:551-559;MarsenicO.AmJKidneyDis2009;53:875-883.08.3mmol/L排泄阈13.3饱和阈25012葡萄糖的过滤率/

重吸收/排泄(mmol/min)3葡萄糖的最大转运值(TmG)开始出现糖尿葡萄糖滤过率通常与血糖浓度成正比过滤的葡萄糖没有排泄排泄的葡萄糖重吸收的葡萄糖斜偏血糖0149.6mg/dL239.6450.5肾脏葡萄糖最大重吸收量取决于肾糖阈八重奏—肾脏肾糖阈指血糖逐渐升高时引起糖尿现象时的血糖浓度,正常值为8.172型糖尿病患者肾糖阈和TmG均升高2型糖尿病患者葡萄糖重吸收率(mg/dL)血糖(mmol/L)健康受试者阈值斜偏TmG=317血糖(mmol/L)葡萄糖重吸收率(mg/dL)阈值TmG=420肾糖阈:2型糖尿病患者较健康受试者升高15%葡萄糖的最大转运值(TmG

):2型糖尿病患者较健康受试者升高32%**P<0.001

DefronzoRA,etal.DiabetesCare.2013;36(10):3169-76.细实线:葡萄糖滤过率粗实线:预测的重吸收率虚横线:TmG的几何平均数圆圈:实际重吸收率八重奏—肾脏2型糖尿病患者肾糖阈和TmG均升高2型糖尿病患者葡萄糖重吸收18肾糖阈升高导致葡萄糖重吸收增加,可引起高血糖

肾糖阈升高葡萄糖重吸收和再循环增加,引起高血糖ChaoEC,etal.NatRevDrugDiscov2010;9:551-559;MarsenicO.AmJKidneyDis2009;53:875-883.GerichJE.DiabetMed2010;27:136–42;Abdul-GhaniMA,DeFronzoRA.EndocrPract2008;14:782–90.血糖经肾脏滤过全部循环的葡萄糖高于肾糖阈时,葡萄糖从尿中排除葡萄糖滤过

葡萄糖重吸收和再循环增加肾糖阈升高高血糖血管八重奏—肾脏肾糖阈升高导致葡萄糖重吸收增加,可引起高血糖肾糖阈升高葡萄19高血糖胰岛β细胞胰岛α细胞二甲双胍

噻唑烷二酮类药物抑制葡萄糖的生成AGI延缓碳水化合物吸收肠促胰岛素DPP-4抑制剂↑胰岛素分泌↓胰高血糖素分泌磺脲类药物刺激胰岛素分泌二甲双胍

噻唑烷二酮类药物↑葡萄糖代谢GLP-1RA促进饱感、降低食欲二甲双胍

↑外周组织葡萄糖处置目前常用降糖药作用于其他七种靶器官,唯独缺少肾脏通路DeFronzoRA.Diabetes2009;58:773–795高血糖胰岛β细胞胰岛α细胞二甲双胍

噻唑烷二酮类药物AGI肠20内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D21SGLT2抑制剂研发历程SGLT2抑制剂研发历程22根皮苷-SGLT抑制剂(Phlorizin)提取自苹果树根,树皮和果皮(1835)同时抑制SGLT1和SGLT2可引起尿糖(1865)报导可治疗糖尿病患者(1899)作为降糖药物研发(1987)EhrenkranzJRL,etal.DiabetesMetabRev200521:31–8.根皮苷-SGLT抑制剂(Phlorizin)提取自苹果树根23SGLT2主要位于肾脏,在葡萄糖重吸收中起主要作用BaysH.CurrMedResOpin2009;25:671–81.

CharlesSH,etal.AmJPhysiolCellPhysiol2010.SGLT2主要位于肾脏,在葡萄糖重吸收中起主要作用Bays24肾脏通过主动转运,每日滤过和重吸收180g葡萄糖WrightEM.AmJPhysiolRenalPhysiol2001;280:F10–8;LeeYJ,etal.KidneyIntSuppl2007;106:S27–35BrownGK.JInheritMetabDis2000;23:237–246.特定葡萄糖转运体(SGLT)负责肾脏的重吸收SGLT110%近端小管S1肾小球远端小管亨利袢集合管葡萄糖滤过葡萄糖重吸收S3~10%的葡萄糖是从S3段重吸收~90%的葡萄糖是从S1/S2段重吸收S2SGLT290%肾脏是葡萄糖滤过和重吸收最重要的一环肾脏通过主动转运,每日滤过和重吸收180g葡萄糖Wright25从根皮苷到达格列净:从基础到临床治疗的飞跃缩短间隔替换为亲脂性基团移除羟基从而增加亲脂性根皮苷舍格列净-A达格列净改变连接位置替换为一种亲脂性小基团除去插入的基团HanS,etal.Diabetes2008;57:1723–1729与SGLT1相比,达格列净对SGLT2的选择性为1200倍口服生物利用度好,不受进食影响半衰期17小时,可一天一次给药从根皮苷到达格列净:从基础到临床治疗的飞跃缩短间隔替换为亲脂26SGLT-2抑制剂作用机制示意图葡萄糖重吸收肾小球近端小管血糖正常者减少葡萄糖重吸收肾小球近端小管使用SGLT2的血糖正常者GlucoseSGLT1SGLT2InhibitorSGLT2GlucoseSGLT1SGLT2

SGLT2抑制剂通过肾脏排泄来降低血糖SGLT-2抑制剂作用机制示意图葡萄糖重吸收肾小球近端小管血27SGLT-2抑制剂可以降低糖尿病患者的肾糖阈FarberSJetal.

JClinInvest195130(2)125-29;MorgensenCE.ScandJClinLabInvest1971;28:101-09;SilvermanM,TurnerRJ.HandbookofPhysiology.In:WindhagerEE,ed.OxfordUniversityPress;1992:2017-38;CersosimoEetal.Diabetes2000;49:1186-93;DeFronzoRAetal.EndocrinePractice200814(6):782-90.

糖尿病患者的阈值SGLT-2抑制剂可以降低糖尿病患者的肾糖阈Farber28达格列净可以降低糖尿病患者肾脏的TmG值DeFronzoRA,etal.DiabetesCare.2013Oct;36(10):3169-76.糖尿病患者肾脏葡萄糖最大重吸收值显著升高2型糖尿病患者健康对照组基线达格列净基线达格列净TmG:最大重吸收率TmG(mg/min)达格列净可以降低糖尿病患者肾脏的TmG值DeFronzoR29肾脏排糖:安全性研究探讨SGLT2抑制剂的其它安全性泌尿系统及生殖系统感染

SGLT2抑制剂的肾脏安全性SGLT2抑制剂对肾脏的直接作用管球反馈近曲小管内钠和糖毒性肾脏排糖:安全性研究探讨SGLT2抑制剂的其它安全性SGLT30CherneyDZ,Circulation.2014Feb4;129(5):587-97.正常生理状态致密斑管球反馈正常肾小球滤过率正常钠离子/葡萄糖重吸收管球反馈受损管球反馈恢复肾小球滤过率升高钠离子/葡萄糖重吸收增加糖尿近曲小管中抑制SGLT2致密斑细胞内转运钠离子浓度降低致密斑细胞内转运钠离子浓度增加肾小球滤过率正常化入球小动脉血管收缩入球小动脉血管舒张入球小动脉血管正常糖尿病肾病早期阶段发生超过滤SGLT2通过管球反馈减少超过滤SGLT2SGLT2正常人、2型糖尿病患者和抑制SGLT2的管球反馈AmJKidneyDis.2014;64(1):16-24CherneyDZ,Circulation.2014F31CherneyDZ,Circulation.2014Feb4;129(5):587-97.肾小球滤过率(ml/min/1.73m2)SGLT2抑制1型糖尿病患者肾小球高滤过1型糖尿病肾功能正常组1型糖尿病肾高滤过组*+-CherneyDZ,Circulation.2014F32根皮苷抑制肾小管钠的重吸收,使近曲小管远段和远端小管近段尿钠浓度增高,从而恢复管球反馈,抑制糖尿病早期肾单位高滤过PollockCAetal.Am.J.Physiol.260:F946-F952根皮苷抑制肾小管钠的重吸收,使近曲小管远段和远端小管近段尿钠33全球糖尿病患病人数逐年上升,带来巨大的负担针对T2DM“八重奏”病理生理机制,目前常用降糖药中缺少肾脏通路肾脏在血糖调节中起重要作用:在糖异生和代谢,尤其是在葡萄糖重吸收中起重要作用2型糖尿病状态下,肾脏葡萄糖重吸收明显增加,进一步加重糖尿病的高血糖状态SGLT2抑制剂达格列净主要是部分抑制肾脏葡萄糖重吸收,改善肾脏的高吸收状态SGLT2抑制剂还可以通过改善肾脏的管球反馈,改善肾脏的高滤过,且减少近曲小管钠毒性和糖毒性,在中度肾功能不全的患者中仍然能安全使用总结全球糖尿病患病人数逐年上升,带来巨大的负担总结342型糖尿病的现代认知与SGLT2抑制剂的作用机制2型糖尿病的现代认知与SGLT2抑制剂的作用机制35内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D36IDF世界地图(第7版):

全球糖尿病患病人数逐年上升预计的2015和2040年全球不同地区糖尿病患者数量北美和加勒比海欧洲西太平洋东南亚非洲拉丁美洲中东和北非DiabetesAtlas,7thedition,IDF,2015.IDF世界地图(第7版):

全球糖尿病患病人数逐年上升预计的37糖尿病的危害和负担糖尿病广泛流行糖尿病广泛流行带来巨大负担DiabetesAtlas,7thedition,IDF,2015纪立农等.中国糖尿病杂志,2014;22(7):594-598.每11位成年人中就有1位糖尿病患者近70%的中国T2DM患者HbA1c未达标每6秒就有一位患者因糖尿病死亡全球健康支出有12%用于糖尿病糖尿病的糖尿病糖尿病广泛流行带来巨大负担DiabetesA38内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D39DeFronzoRA.Diabetes2009;58:773–795.高血糖胰岛β细胞胰岛素分泌受损胰岛α细胞胰高血糖素分泌增多

葡萄糖重吸收增加肝糖生成增多神经递质功能障碍肠促胰素反应减低脂解作用增强肌肉组织葡萄糖摄取减少糖尿病发病机制:“八重奏”导致高血糖DeFronzoRA.Diabetes2009;58:40糖尿病自然病程:β-细胞功能进行性衰退史临床糖尿病糖尿病前期高胰岛素血症胰岛素抵抗胰岛素分泌异常第一时相分泌消失各种易感基因相互作用环境因素肥胖低体力活动等β-细胞功能(%)糖耐量异常糖尿病期糖尿病诊断时β细胞功能仅剩50%β细胞功能进行性减退,每年约下降4%糖尿病诊断(年)HolmanRR,etal.DiabetesResClinPract.1998Jul;40Suppl:S21-5.八重奏—β细胞糖尿病自然病程:β-细胞功能进行性衰退史临床糖尿病糖尿病前41八重奏—α细胞T2DM患者空腹胰高糖素浓度显著升高MatsudaM,etal.Metabolism.2002Sep;51(9):1111-9.P<0.001pg/ml八重奏—α细胞T2DM患者空腹胰高糖素浓度显著升高Matsu42T2DM患者肝糖生成增加八重奏—肝脏SharabiK,etal.MolAspectsMed.2015Nov5.pii:S0098-2997(15)30005-4.胰岛素抵抗胰岛素分泌相对不足HGP血糖T2DM前期出现胰岛素抵抗,胰岛素代偿性分泌而维持血糖稳态;进展为T2DM时,胰岛β细胞不能继续增加胰岛素分泌,即形成胰岛素分泌相对不足,肝糖(HGP)生成增加,最终导致血糖升高T2DM患者肝糖生成增加八重奏—肝脏SharabiK,e43八重奏—肌肉T2DM患者肌肉组织葡萄糖摄取减少DeFronzoRA.Diabetes2009;58:773–795大腿葡萄糖摄取时间(分)对照组全身葡萄糖摄取(mg/kg·min)对照组八重奏—肌肉T2DM患者肌肉组织葡萄糖摄取减少DeFronz44脂肪代谢紊乱是T2DM糖耐量受损的病理机制八重奏—脂肪DeFronzoRA.Diabetes2009;58:773–795胰岛素抗脂解作用血浆中FFA浓度糖异生胰岛素分泌受损脂肪细胞胰岛素抵抗胰岛素增敏激素,如脂联素炎症反应脂肪存储能力脂肪细胞增大脂肪细胞对胰岛素抗脂解作用的抵抗,使血浆中FFA浓度升高,导致糖异生升高和胰岛素抵抗脂肪细胞增大,使脂肪存储能力下降,脂肪溢出进入肝脏、肌肉、β细胞等部位,诱发这些部位胰岛素抵抗FFA浓度升高和胰岛素抵抗导致糖异生升高,胰岛素分泌受损、胰岛素增敏激素分泌下降,炎症反应升高等,最终导致T2DM糖耐量受损脂肪代谢紊乱是T2DM糖耐量受损的病理机制八重奏—脂肪DeF45八重奏—胃肠肠促胰素GLP-1多重调节机制,降低血糖BaggioLL,etal.Gastroenterology.2007May;132(6):2131-57.

心脏保护作用增加心输出量心脏脑神经保护作用减低食欲肝脏减少肝糖生成减慢胃排空胃肠胰腺脂肪组织肌肉葡萄糖摄取和储存胰岛素敏感性胰岛素分泌胰高糖素分泌胰岛素合成β细胞增殖β细胞凋亡减少八重奏—胃肠肠促胰素GLP-1多重调节机制,降低血糖Bagg46八重奏—胃肠T2DM患者GLP-1分泌显著减少Mean±SE;N=54;*T2DM和NGT组的差别p<.05Toft-NielsenM,etal.JClinEndocrinolMetab.2001;86:3717-3723.该研究为一项随机对照研究,研究纳入54例2型糖尿病患者,15例糖耐量受损的患者,33例糖耐量正常的对照组受试者。用GLP-1的C末端特异性抗体编码方法测定,测定的是GLP-1(7-36)酰胺及其代谢产物GLP-1(9-36)酰胺的总和GLP-1(pmol/L)时间(min)T2DMNGTIGT八重奏—胃肠T2DM患者GLP-1分泌显著减少Mean±47MatsudaM,etal.Diabetes.1999Sep;48(9):1801-6.八重奏—脑葡萄糖摄入一段时间后,下丘脑部分区域受到抑制葡萄糖摄入时间(分)下丘脑核磁共振成像信号强度体胖者体瘦者该研究纳入10例体胖者和10例体瘦者,在受试者摄入食物后,通过核磁共振成像检测下丘脑对食物摄入后的反应该研究结果表明:在葡萄糖摄入后,无论是体胖者或是体瘦者下丘脑都会出现一段时间的抑制效果研究提示:下丘脑部分区域在葡萄糖摄入后一段时间内受到抑制MatsudaM,etal.Diabetes.1948内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D49肾脏负责20%-25%糖原异生糖原异生25%-30%*肝糖原分解45%-50%*糖原异生20%-25%*葡萄糖合成约70g/d*吸收后的状态GerichJE.DiabetMed2010;27:136–42.肾脏负责20%-25%糖原异生,与肝脏糖异生提供葡萄糖等量八重奏—肾脏肾脏负责20%-25%糖原异生糖原异生25%-30%*糖原50肾糖阈指血糖逐渐升高时引起糖尿现象时的血糖浓度,正常值为8.88mmol/L(160-190mg/dL)血糖超出肾糖阈,肾葡萄糖转运体饱和导致糖尿ChaoEC,etal.NatRevDrugDiscov2010;9:551-559;MarsenicO.AmJKidneyDis2009;53:875-883.08.3mmol/L排泄阈13.3饱和阈25012葡萄糖的过滤率/

重吸收/排泄(mmol/min)3葡萄糖的最大转运值(TmG)开始出现糖尿葡萄糖滤过率通常与血糖浓度成正比过滤的葡萄糖没有排泄排泄的葡萄糖重吸收的葡萄糖斜偏血糖0149.6mg/dL239.6450.5肾脏葡萄糖最大重吸收量取决于肾糖阈八重奏—肾脏肾糖阈指血糖逐渐升高时引起糖尿现象时的血糖浓度,正常值为8.512型糖尿病患者肾糖阈和TmG均升高2型糖尿病患者葡萄糖重吸收率(mg/dL)血糖(mmol/L)健康受试者阈值斜偏TmG=317血糖(mmol/L)葡萄糖重吸收率(mg/dL)阈值TmG=420肾糖阈:2型糖尿病患者较健康受试者升高15%葡萄糖的最大转运值(TmG

):2型糖尿病患者较健康受试者升高32%**P<0.001

DefronzoRA,etal.DiabetesCare.2013;36(10):3169-76.细实线:葡萄糖滤过率粗实线:预测的重吸收率虚横线:TmG的几何平均数圆圈:实际重吸收率八重奏—肾脏2型糖尿病患者肾糖阈和TmG均升高2型糖尿病患者葡萄糖重吸收52肾糖阈升高导致葡萄糖重吸收增加,可引起高血糖

肾糖阈升高葡萄糖重吸收和再循环增加,引起高血糖ChaoEC,etal.NatRevDrugDiscov2010;9:551-559;MarsenicO.AmJKidneyDis2009;53:875-883.GerichJE.DiabetMed2010;27:136–42;Abdul-GhaniMA,DeFronzoRA.EndocrPract2008;14:782–90.血糖经肾脏滤过全部循环的葡萄糖高于肾糖阈时,葡萄糖从尿中排除葡萄糖滤过

葡萄糖重吸收和再循环增加肾糖阈升高高血糖血管八重奏—肾脏肾糖阈升高导致葡萄糖重吸收增加,可引起高血糖肾糖阈升高葡萄53高血糖胰岛β细胞胰岛α细胞二甲双胍

噻唑烷二酮类药物抑制葡萄糖的生成AGI延缓碳水化合物吸收肠促胰岛素DPP-4抑制剂↑胰岛素分泌↓胰高血糖素分泌磺脲类药物刺激胰岛素分泌二甲双胍

噻唑烷二酮类药物↑葡萄糖代谢GLP-1RA促进饱感、降低食欲二甲双胍

↑外周组织葡萄糖处置目前常用降糖药作用于其他七种靶器官,唯独缺少肾脏通路DeFronzoRA.Diabetes2009;58:773–795高血糖胰岛β细胞胰岛α细胞二甲双胍

噻唑烷二酮类药物AGI肠54内容SGLT2抑制剂:从理论基础到临床实践肾脏在血糖调节中的作用T2DM病理生理机制的现代认知糖尿病流行病学特点内容SGLT2抑制剂:肾脏在血糖调节中的作用T2D55SGLT2抑制剂研发历程SGLT2抑制剂研发历程56根皮苷-SGLT抑制剂(Phlorizin)提取自苹果树根,树皮和果皮(1835)同时抑制SGLT1和SGLT2可引起尿糖(1865)报导可治疗糖尿病患者(1899)作为降糖药物研发(1987)EhrenkranzJRL,etal.DiabetesMetabRev200521:31–8.根皮苷-SGLT抑制剂(Phlorizin)提取自苹果树根57SGLT2主要位于肾脏,在葡萄糖重吸收中起主要作用BaysH.CurrMedResOpin2009;25:671–81.

CharlesSH,etal.AmJPhysiolCellPhysiol2010.SGLT2主要位于肾脏,在葡萄糖重吸收中起主要作用Bays58肾脏通过主动转运,每日滤过和重吸收180g葡萄糖WrightEM.AmJPhysiolRenalPhysiol2001;280:F10–8;LeeYJ,etal.KidneyIntSuppl2007;106:S27–35BrownGK.JInheritMetabDis2000;23:237–246.特定葡萄糖转运体(SGLT)负责肾脏的重吸收SGLT110%近端小管S1肾小球远端小管亨利袢集合管葡萄糖滤过葡萄糖重吸收S3~10%的葡萄糖是从S3段重吸收~90%的葡萄糖是从S1/S2段重吸收S2SGLT290%肾脏是葡萄糖滤过和重吸收最重要的一环肾脏通过主动转运,每日滤过和重吸收180g葡萄糖Wright59从根皮苷到达格列净:从基础到临床治疗的飞跃缩短间隔替换为亲脂性基团移除羟基从而增加亲脂性根皮苷舍格列净-A达格列净改变连接位置替换为一种亲脂性小基团除去插入的基团HanS,etal.Diabetes2008;57:1723–1729与SGLT1相比,达格列净对SGLT2的选择性为1200倍口服生物利用度好,不受进食影响半衰期17小时,可一天一次给药从根皮苷到达格列净:从基础到临床治疗的飞跃缩短间隔替换为亲脂60SGLT-2抑制剂作用机制示意图葡萄糖重吸收肾小球近端小管血糖正常者减少葡萄糖重吸收肾小球近端小管使用SGLT2的血糖正常者GlucoseSGLT1SGLT2InhibitorSGLT2GlucoseSGLT1SGLT2

SGLT2抑制剂通过肾脏排泄来降低血糖SGLT-2抑制剂作用机制示意图葡萄糖重吸收肾小球近端小管血61SGLT-2抑制剂可以降低糖尿病患者的肾糖阈FarberSJetal.

JClinInvest195130(2)125-29;MorgensenCE.ScandJClinLabInvest1971;28:101-09;SilvermanM,TurnerRJ.HandbookofPhysiology.In:Win

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论