




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣ C.2 D.﹣22.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.23 B.32 C.63.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:204.下列函数中,是反比例函数的是()A. B. C. D.5.为坐标原点,点、分别在轴和轴上,的内切圆的半径长为()A. B. C. D.6.一名射击爱好者5次射击的中靶环数如下:6,7,1,8,1.这5个数据的中位数是()A.6 B.7 C.8 D.17.二次函数图象的顶点坐标是()A. B. C. D.8.如图,某停车场人口的栏杆,从水平位置AB绕点O旋转到A'B′的位置已知AO=4m,若栏杆的旋转角∠AOA′=50°时,栏杆A端升高的高度是()A. B.4sin50° C. D.4cos50°9.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的锐角三角函数值()A.扩大2倍 B.缩小 C.不变 D.无法确定10.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(
)A. B. C. D.11.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A. B.C. D.12.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米二、填空题(每题4分,共24分)13.抛物线y=x2﹣4x的对称轴为直线_____.14.如图,是⊙的一条弦,⊥于点,交⊙于点,连接.如果,,那么⊙的半径为_________.15.“蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)16.已知3是一元二次方程x2﹣2x+a=0的一个根,则a=_____.17.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______18.年月日我国自主研发的大型飞机成功首飞,如图给出了一种机翼的示意图,其中,,则的长为_______.三、解答题(共78分)19.(8分)2019年11月26日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,,∠ABD=105°,求AD的长.20.(8分)根据要求画出下列立体图形的视图.21.(8分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.22.(10分)如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于两点,过点作轴于点,,,点的坐标为.(1)求一次函数和反比例函数的表达式;(2)求的面积;(3)是轴上一点,且是等腰三角形,请直接写出所有符合条件的点坐标.23.(10分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.24.(10分)(1)计算:.(2)用适当方法解方程:(3)用配方法解方程:25.(12分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与⊙O的位置关系是_____.(直接写出答案)(2)若AC=5,BC=12,求⊙O的半径.26.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).
参考答案一、选择题(每题4分,共48分)1、C【分析】先求出点A1的坐标,再根据旋转的性质求出点A1的坐标,然后根据图象上点的纵坐标循环规律即可求出m的值.【详解】当y=0时,x1﹣3x=0,解得:x1=0,x1=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A1的坐标为(6,0).∵1010÷6=336……4,∴当x=4时,y=m.由图象可知:当x=1时的y值与当x=4时的y值互为相反数,∴m=﹣(1×1﹣3×1)=1.故选:C.【点睛】此题考查的是探索规律题和求抛物线上点的坐标,找出图象上点的纵坐标循环规律是解决此题的关键.2、D【分析】首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.【详解】在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA.∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC.∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴AD=∴tanB=故选D.【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.3、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【点睛】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.4、C【解析】反比例函数的形式有:①(k≠0);②y=kx﹣1(k≠0)两种形式,据此解答即可.【详解】A.它是正比例函数;故本选项错误;B.不是反比例函数;故本选项错误;C.符合反比例函数的定义;故本选项正确;D.它是正比例函数;故本选项错误.故选:C.【点睛】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.5、A【分析】先运用勾股定理求得的长,证得四边形为正方形,设半径为,利用切线长定理构建方程即可求解.【详解】如图,过内心C作CD⊥AB、CE⊥AO、CF⊥BO,垂足分别为D、E、F,∵,∴,,∵CE⊥AO、CF⊥BO,∴四边形为正方形,设半径为,则∵AB、AO、BO都是的切线,∴,,∴,即:,解得:,故选:A.【点睛】本题考查了切线长定理,勾股定理,证得四边形为正方形以及利用切线长定理构建方程是解题的关键.6、C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【详解】将这组数据重新排序为6,7,8,1,1,∴中位数是按从小到大排列后第3个数为:8.故选C.7、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、B【分析】过点A'作AO的垂线,则垂线段为高度h,可知AO=A'O,则高度h=A'O×sin50°,即为答案B.【详解】解:栏杆A端升高的高度=AO•sin∠AOA′=4×sin50°,故选:B.【点睛】本题的考点是特殊三角形的三角函数.方法是熟记特殊三角形的三角函数.9、C【解析】∵在Rt△ABC中,∠C=90°,∴,,,∴在Rt△ABC中,各边都扩大2倍得:,,,故在Rt△ABC中,各边都扩大2倍,则锐角A的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A的三角函数值是不会变的.10、A【分析】画出图像,勾股定理求出AB的长,表示cosB即可解题.【详解】解:如下图,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故选A.【点睛】本题考查了三角函数的求值,属于简单题,熟悉余弦函数的表示是解题关键.11、A【分析】连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.【详解】连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.12、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.二、填空题(每题4分,共24分)13、x=1.【分析】用对称轴公式直接求解.【详解】抛物线y=x1﹣4x的对称轴为直线x==﹣=1.故答案为x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式x=是本题的解题关键..14、5【分析】由垂径定理可知,在中利用勾股定理即可求出半径.【详解】设⊙的半径为r∵是⊙的一条弦,⊥,∴在中∵∴∴故答案为5【点睛】本题主要考查勾股定理及垂径定理,掌握勾股定理及垂径定理的内容是解题的关键.15、确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,.16、-3【分析】根据一元二次方程解的定义把代入x2﹣2x+a=0即可求得答案.【详解】将代入x2﹣2x+a=0得:,解得:,故答案为:.【点睛】本题考查了一元二次方程解的定义,本题逆用一元二次方程解的定义是解题的关键.17、8m【分析】由题意证△ABO∽△CDO,可得,即,解之可得.【详解】如图,
由题意知∠BAO=∠C=90°,
∵∠AOB=∠COD,
∴△ABO∽△CDO,
∴,即,
解得:CD=8,
故答案为:8m.【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.18、【分析】延长交于点,设于点,通过解直角三角形可求出、的长度,再利用即可求出结论.【详解】延长交于点,设于点,如图所示,在中,,,.在中,,,,,,,,故答案为:.【点睛】本题考查了解直角三角形的应用.通过解直角三角形求出、的长度是解题的关键.三、解答题(共78分)19、2()km【分析】作BE⊥AD于点E,根据∠CAB=30°,∠ABD=105°,可以求得∠ABE和∠DBE的度数以及BE、DE的长,进而求得AE的长,然后可求得AD的长.【详解】作BE⊥AD于点E,∵∠CAB=30°,∴∠ABE=60°,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∵,∴BE=DE=2km,∴AE=,∴AD=AE+DE=+2=2()km【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.20、答案见解析.【分析】根据主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,即可得到结果.【详解】解:如图所示:【点睛】本题考查几何体的三视图,作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.21、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.22、(1),;(2)9;(3)点坐标为(0,5)或(0,-5)或(0,8)或【分析】(1)先根据勾股定理求出OD=3,AD=4,得出点A(3,4),进而求出反比例函数解析式,再求出点B坐标,最后用待定系数法求出直线AB解析式;(2)求出直线AB与y轴的交点坐标,再根据解答即可;(3)设出点P坐标,进而表示出OP,AP,OA,利用等腰三角形的两边相等建立方程求解即可得出结论.【详解】(1)∵,∴设,则,,∴,∴,,∴点的坐标为(3,4),∵过点,∴,∴,当时,,∴点坐标为(-6,-2),∵直线过,∴解得∴直线解析式为.(2)如图,记直线与轴交于点,对于,当时,,∴点坐标为(0,2),∴.(3)设点P(0,m),∵A(3,4),O(0,0),∴OA=5,OP=|m|,AP=,∵△AOP是等腰三角形,∴①当OA=OP时,∴|m|=5,∴m=±5,∴P(0,5)或(0,-5),②当OA=AP时,∴5=,∴m=0(舍)或m=8,∴P(0,8),③OP=AP时,∴|m|=,∴m=,∴P(0,),即:当P点坐标为(0,8),(0,5),(0,-5)或(0,)时,△AOP是等腰三角形.【点睛】此题是反比例函数综合题,主要考查了勾股定理,待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.23、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.24、(1)3;(2)x1=,x2=;(3)x1=1+,x2=1−.【解析】(1)先根据特殊角的三角函数值、二次根式的性质、零指数幂和绝对值的意义逐项化简,再合并同类二次根式或同类项即可;(2)用直接开平方法求解即可;(3)先把-3移项,再把二次项系数化为1,两边都加1,把左边写成完全平方的形式,两边同时开平方即可.【详解】解:(1)原式=4×-2+1+2=3;(2)(2x-5)2=,2x-5=±,所以x1=,x2=;(3)解:∵2x2-4x-3=0,∴2x2-4x=3,∴x2−2x=,∴x2−2x+1=+1,∴(x−1)2=,∴x-1=±,∴x1=1+,x2=1−.【点睛】本题考查了实数的混合运算,一元二次方程的解法,熟练掌握二次方程的解法是解答本题的关键.25、(1)作图见解析;(2)作图见解析;综合运用:(1)相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冥想课件介绍语
- 2025年广西贺州市平桂管理区平桂高级中学物理高一下期末监测模拟试题含解析
- 二零二五年IDC数据中心区块链技术服务合同
- 二零二五年度安全标准鸡苗运输安全管理合同
- 二零二五版车床租赁与设备租赁期内的维护责任协议
- 二零二五版专业旅游包车服务合同规范
- 2025年度餐饮连锁品牌合作协议
- 二零二五年环境监测与污染防控技术咨询合同
- 二零二五年度能源审计EMC合同能源管理服务协议
- 二零二五年度安全生产信息化建设责任合同书范本
- 【新教材】苏科版(2024)七年级上册数学第1-6章全册教案设计
- 木垒风电勘察报告
- (2024年)剪映入门教程课件
- 石材的检测报告
- 2024年低压电工(特种作业操作证)考试题库及答案(通用版)
- 班组长压力和情绪管理
- 初中数学学法指导讲座
- GB 8109-2023推车式灭火器
- 集卡车安全操作规程
- 高考英语词汇3500电子版
- 2022年新疆公务员考试行测真题及答案解析
评论
0/150
提交评论