陕西省宝鸡市清姜路中学2022-2023学年数学九上期末联考试题含解析_第1页
陕西省宝鸡市清姜路中学2022-2023学年数学九上期末联考试题含解析_第2页
陕西省宝鸡市清姜路中学2022-2023学年数学九上期末联考试题含解析_第3页
陕西省宝鸡市清姜路中学2022-2023学年数学九上期末联考试题含解析_第4页
陕西省宝鸡市清姜路中学2022-2023学年数学九上期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将抛物线y=2xA.y=2(x-2)2-3 B.y=2(x-2)22.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为()A. B.C. D.3.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”4.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.75.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)6.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.7.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱8.下列四个几何体中,主视图为圆的是()A. B. C. D.9.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)10.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+311.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生12.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.14.已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式.15.在△ABC中,若AB=5,BC=13,AD是BC边上的高,AD=4,则tanC=_____.16.二次函数y=x2﹣2x+3图象的顶点坐标为_____.17.二次函数的图象与y轴的交点坐标是__.18.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)三、解答题(共78分)19.(8分)已知△ABC在平面直角坐标系中的位置如图所示.请解答:(1)点A、C的坐标分别是、;(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3)在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).20.(8分)如图,在等腰直角三角形MNC中,CN=MN=,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.(1)∠NCO的度数为________;(2)求证:△CAM为等边三角形;(3)连接AN,求线段AN的长.21.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.22.(10分)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1)求证:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中点,求DE的长.23.(10分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.24.(10分)用适当的方法解下列方程:(1)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.25.(12分)如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.(1)求抛物线的解析式;(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.26.如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.(1)求证:AC=AD.(2)当,AD=6时,求CD的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y=2x2向右平移2个单位得y=2(x﹣2)2,再向上平移3个单位得y=2(x﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.2、B【解析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:把抛物线y=-2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是y=-2(x+3)2-4,故选:B.【点睛】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“红桃”的概率是,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.4、D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.【点睛】本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.5、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案.【详解】解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数.6、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【点睛】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.7、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.8、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.9、C【解析】试题分析:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1).故选C.考点:平行投影.10、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x﹣1)1+2,把(0,11)代入可求出a=-1.故二次函数的解析式为y=﹣1(x﹣1)1+2.故选A.考点:待定系数法求二次函数解析式11、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【点睛】本题考查了统计的应用,正确理解概率的意义是解题的关键.12、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.二、填空题(每题4分,共24分)13、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.14、y=(x>0)【解析】试题解析:只要使反比例系数大于0即可.如y=(x>0),答案不唯一.考点:反比例函数的性质.15、或【分析】先根据勾股定理求出BD的长,再分高AD在△ABC内部和外部两种情况画出图形求出CD的长,然后利用正切的定义求解即可.【详解】解:在直角△ABD中,由勾股定理得:BD==3,若高AD在△ABC内部,如图1,则CD=BC﹣BD=10,∴tanC=;若高AD在△ABC外部,如图2,则CD=BC+BD=16,∴tanC=.故答案为:或.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.16、(1,2).【分析】先把此二次函数右边通过配方写成顶点式得:y=(x-1)2+2,从而求解.【详解】解:y=x2﹣2x+3y=x2﹣2x+1+2y=(x-1)2+2,所以,其顶点坐标是(1,2).故答案为(1,2)【点睛】本题考查将二次函数一般式化为顶点式求二次函数的顶点坐标,正确计算是本题的解题关键.17、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.18、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.【点睛】本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.三、解答题(共78分)19、(1)(1,4);(5,2);(2)作图见解析;(3).【分析】(1)根据图可得,点A坐标为(1,4);点C坐标为(5,2);(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;(3)在(2)的条件下,先求出AC的长,再求点C旋转到点C′所经过的路线长即可;【详解】解:(1)点A坐标为(1,4);点C坐标为(5,2).故答案为:(1,4);(5,2);(2)如图所示,△AB'C'即为所求;(3)∵点A坐标为(1,4);点C坐标为(5,2),∴,∴点C旋转到C′所经过的路线长;【点睛】本题主要考查了作图-旋转变换,轨迹,掌握作图-旋转变换是解题的关键.20、(1)15°;(2)证明见解析;(3)【解析】分析:(1)由旋转可得∠ACM=60°,再根据等腰直角三角形MNC中,∠MCN=45°,运用角的和差关系进行计算即可得到∠NCO的度数;(2)根据有一个角是60°的等腰三角形是等边三角形进行证明即可;(3)根据△MNC是等腰直角三角形,△ACM是等边三角形,判定△ACN≌△AMN,再根据Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,即可得到AN=AD﹣ND=﹣1.详解:(1)由旋转可得∠ACM=60°.又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;故答案为15°;(2)∵∠ACM=60°,CM=CA,∴△CAM为等边三角形;(3)连接AN并延长,交CM于D.∵△MNC是等腰直角三角形,△ACM是等边三角形,∴NC=NM=,CM=2,AC=AM=2.在△ACN和△AMN中,∵,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=CM=1,∴Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,∴AN=AD﹣ND=﹣1.点睛:本题主要考查了旋转的性质,等边三角形的判定以及全等三角形的判定与性质的运用,解题时注意:有一个角是60°的等腰三角形是等边三角形.解决问题的关键是作辅助线构造直角三角形.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.22、(1)证明见解析;(2)DE=.【分析】(1)由DE⊥AC,∠B=90°可得出∠CDE=∠B,再结合公共角相等,即可证出△CDE∽△CBA;(2)在Rt△ABC中,利用勾股定理可求出BC的长,结合点E为线段BC的中点可求出CE的长,再利用相似三角形的性质,即可求出DE的长.【详解】(1)∵DE⊥AC,∠B=90°,∴∠CDE=90°=∠B.又∵∠C=∠C,∴△CDE∽△CBA.(2)在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==1.∵E是BC中点,∴CE=BC=2.∵△CDE∽△CBA,∴=,即=,∴DE==.【点睛】本题考查了相似三角形的判定与性质以及勾股定理,解题的关键是:(1)利用“两角对应相等两三角形相似”证出两三角形相似;(2)利用相似三角形的性质求出DE的长.23、(1)y1=1,y2=;(2)【分析】(1)先移项,再用提公因式法解方程即可;(2)将三角函数的对应值代入计算即可.【详解】(1)3y(y-1)=2(y-1),,(3y-2)(y-1)=0,y1=1,y2=;(2)sin60°cos45°+tan30°,,=.【点睛】此题考查计算能力,(1)是解方程,解方程时需根据方程的特点选择适合的方法使计算简便;(2)是三角函数值的计算,熟记各角的三角函数值是解题的关键.24、(1)x1=-2,x2=6;(2)x1=,x2=【分析】(1)先移项,两边再开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,代入公式求出即可.【详解】(1)(x-2)2-16=1,(x-2)2=16,两边开方得:x-2=±4,解得:x1=-2,x2=6;(2)5x2+2x-1=1,b2-4ac=22+4×5×1=24,x=,∴x1=,x2=【点睛】本题考查了解一元二次方程的应用,主要考查了学生的计算能力,题目是一道比较好的题目,难度适中.25、(1);(2);(3)存在,,【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,),表示出PE=,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出最值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【详解】(1)∵点,在抛物线上,∴,∴,∴抛物线的解析式为,(2)∵AC∥x轴,A(0,3)∴=3,∴x1=−6,x2=0,∴点C的坐标(−8,3),∵点,,求得直线AB的解析式为y=−x+3,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论