




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能确定2.若∽,相似比为,则与的周长比为()A. B. C. D.3.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.54.关于的方程有实数根,则满足()A. B.且 C.且 D.5.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AC的长是()A.10米 B.米 C.15米 D.米6.矩形ABCD中,AB=10,,点P在边AB上,且BP:AP=4:1,如果⊙P是以点P为圆心,PD长为半径的圆,那么下列结论正确的是()A.点B、C均在⊙P外 B.点B在⊙P外,点C在⊙P内C.点B在⊙P内,点C在⊙P外 D.点B、C均在⊙P内7.下列事件中,是随机事件的是()A.两条直线被第三条直线所截,同位角相等B.任意一个四边形的外角和等于360°C.早上太阳从西方升起D.平行四边形是中心对称图形8.如图,点在以为直径的内,且,以点为圆心,长为半径作弧,得到扇形,且,.若在这个圆面上随意抛飞镖,则飞镖落在扇形内的概率是()A. B. C. D.9.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.10.二次函数在下列()范围内,y随着x的增大而增大.A. B. C. D.二、填空题(每小题3分,共24分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.12.如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是_____.13.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.14.如图,在中,,是边上的中线,,则的长是__________.15.已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是______.16.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.17.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.18.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.三、解答题(共66分)19.(10分)己知函数(是常数)(1)当时,该函数图像与直线有几个公共点?请说明理由;(2)若函数图像与轴只有一公共点,求的值.20.(6分)如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积21.(6分)某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.22.(8分)如图,为测量一条河的宽度,某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.23.(8分)如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.24.(8分)为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.(1)求月销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?25.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.26.(10分)探究问题:⑴方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法迁移:如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.⑶问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得
Rt△ABC∽Rt△A′B′C′,
∠A=∠A′,sinA=sinA′
故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.2、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵∽,相似比为,∴与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.3、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可.【详解】解:如图,连结DN,
∵DE=EM,FN=FM,
∴EF=DN,
当点N与点B重合时,DN的值最大即EF最大,
在Rt△ABD中,∵∠A=90°,AD=6,AB=8,
∴,
∴EF的最大值=BD=1.
故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.4、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5、B【解析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6、A【分析】根据BP=4AP和AB的长度求得AP的长度,然后利用勾股定理求得圆P的半径PD的长;根据点B、C到P点的距离判断点P与圆的位置关系即可【详解】根据题意画出示意图,连接PC,PD,如图所示∵AB=10,点P在边AB上,BP:AP=4:1∴AP=2,BP=8又∵AD=∴圆的半径PD=PC=∵PB=8>6,PC=>6∴点B、C均在⊙P外故答案为:A【点睛】本题考查了点和圆的位置关系的判定,根据点和圆心之间的距离和半径的大小关系作出判断即可7、A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B,不可能事件.选项C,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.8、C【分析】如图,连接AO,∠BAC=120,根据等腰三角形的性质得到AO⊥BC,∠BAO=60,解直角三角形得到AB=,由扇形的面积公式得到扇形ABC的面积=,根据概率公式即可得到结论.【详解】如图,连接AO,∠BAC=120,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60,∵BC=2,∴BO=1,∴AB=BO÷cos30°=,∴扇形ABC的面积=,∵⊙O的面积=,∴飞镖落在扇形ABC内的概率是=,故选:C.【点睛】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.9、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.10、C【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】,∵图像的对称轴为x=1,a=-1,∴当x时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a时,对称轴左减右增.二、填空题(每小题3分,共24分)11、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.12、1【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,解得,S△ABC=25,∴四边形DBCE的面积=25﹣4=1,故答案为:1.【点睛】考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.13、6π【分析】直接利用弧长公式计算即可.【详解】利用弧长公式计算:该莱洛三角形的周长(cm)故答案为6π【点睛】本题考查了弧长公式,熟练掌握弧长公式是解题关键.14、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.15、【分析】根据反比例函数的图象与性质即可求出k的范围.【详解】解:由题意可知:,
∴,故答案为:.【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.16、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.17、15【分析】根据比例线段的定义即可求解.【详解】由题意得:将a,b,c的值代入得:解得:(cm)故答案为:15.【点睛】本题考查了比例线段的定义,掌握比例线段的定义及其基本性质是解题关键.18、(或)【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.【详解】解:∵分别为矩形的边,的中点,∴EF=AB=CD,AE=AD=BC,∵矩形与矩形相似∴∴∴∴相似比=(或)故答案为:(或).【点睛】此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.三、解答题(共66分)19、(1)函数图像与直线有两个不同的公共点;(2)或.【分析】(1)首先联立二次函数和一次函数得出一元二次方程,然后由根的判别式判定即可;(2)分情况讨论:当和时,与轴有一个公共点求解即可.【详解】(1)当时,∴∴∵∴方程有两个不相等的实数根,函数图像与直线有两个不同的公共点(2)①当时,函数与轴有一个公共点②当时,函数是二次函数由题可得,综上可知:或.【点睛】此题主要考查二次函数与一次函数的综合运用,熟练掌握,即可解题.20、9【分析】过点A作AD⊥BC于D,根据锐角三角函数求出AD,然后根据三角形的面积公式计算面积即可.【详解】解:过点A作AD⊥BC于D在Rt△ABD中,AB=4,∠B=60°∴AD=AB·sinB=∴S△ABC=BC·AD==9【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.21、人行通道的宽度为1米.【分析】设人行通道的宽度为x米,根据矩形绿地的面积和为102平方米,列出关于x的一元二次方程,求解即可.【详解】设人行通道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=102,解得:x1=1,x2=(不合题意,舍去).答:人行通道的宽度为1米.【点睛】本题主要考查一元二次方程的实际应用----面积问题,根据题意,列出一元二次方程,是解题的关键.22、米【分析】如图(见解析),过点A作于点E,过B作于点F,设河宽为x米,则,在和中分别利用和建立x的等式,求解即可.【详解】过点A作于点E,过B作于点F设河宽为x米,则依题意得在中,,即解得:则在中,,即解得:(米)答:根据学习小组的测量数据计算出河宽为米.【点睛】本题考查了锐角三角函数中的正切的实际应用,依据题意构造出直角三角形是解题关键.23、(1);(2),当时,有最大值,最大值;(2),【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x-2),将点C(0,2)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)设直线BC的函数解析式为y=kx+b.结合点B、点C的坐标利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m找出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式求出函数解析式,利用配方法将S关于m的函数关系式进行变形,从而得出结论;(2)先求出对称轴,设M(1,y),然后分分BM为斜边和CM为斜边两种情况求解即可;【详解】解:(1)∵抛物线与x轴交于A(-1,0)、B(2,0)两点,∴设抛物线的解析式为y=a(x+1)(x-2),又∵点C(0,2)在抛物线图象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴抛物线解析式为y=-(x+1)(x-2)=-x2+2x+2.∴抛物线解析式为;(2)设直线的函数解析式为,∵直线过点,,∴,解得,∴,设,,∴,∴,∵,∴当时,有最大值,最大值;(2)∵,∴对称轴为直线x=1,设M(1,y),则CM2=1+(y-2)2=y2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.当BM为斜边时,则y2-6y+10+18=y2+4,解得y=4,此时M(1,4);当CM为斜边时,y2+4+18=y2-6y+10,解得y=-2,此时M(1,-2);综上可得点的坐标为,.【点睛】本题考查了二次函数的性质、待定系数法求函数解析式、两点间的距离公式、三角形的面积公式以及勾股定理,解题的关键:(1)待定系数法求函数解析式;(2)求出S与m的关系式;(2)分类讨论.24、(1)与的函数关系式为;(2)该设备的销售单价应是27万元.【分析】(1)根据图像上点坐标,代入,用待定系数法求出即可.(2)根据总利润=单个利润销售量列出方程即可.【详解】解:(1)设与的函数关系式为,依题意,得解得所以与的函数关系式为.(2)依题知.整理方程,得.解得.∵此设备的销售单价不得高于35万元,∴(舍),所以.答:该设备的销售单价应是27万元.【点睛】本题考查了一次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京技术服务合同范
- 内墙油漆劳务分包合同
- 产品购销合同详细
- 外汇保证借款合同
- 工程桥架材料购销合同
- 制作基础知识教程
- 资质租赁合同范本合法
- 省级代理授权合同范本
- 钢结构长廊合同范本
- 贴砖瓦工合同范本
- 杭州临平事业单位笔试真题及答案2024
- 四川省2024年全国高中数学联赛(预赛)试题(解析版)
- 中国邮政招聘笔试题库
- 生产部人员岗位技能矩阵图
- 高考化学知识点归纳与总结
- 2024年上海核工程研究设计院股份有限公司招聘笔试冲刺题(带答案解析)
- 抢救病人的流程及用药
- 二年级下册语文集备6写话《我想养一只小动物》课件
- MOOC 医学心理学-北京大学 中国大学慕课答案
- 2024年银行考试-兴业银行笔试参考题库含答案
- 山东省潍坊市2023-2024学年一年级下学期期中质量检测数学试题
评论
0/150
提交评论