版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE23第一章计数原理一.学习目标1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.二.知识网络组合组合排列组合二项式定理两个计数原理排列排列概念排列数公式组合概念组合数公式组合数性质应用通项公式二项式定理二项式系数性质应用第一课两个原理一.知识梳理1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做n步有mn种不同的方法,那么完成这件事共有N=种不同的方法.3.解题方法:枚举法、插空法、隔板法.二.基础自测1.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种.(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有3×13=39种方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.2.(09重庆卷)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).解:分两步完成:第一步将4名大学生按,2,1,1分成三组,其分法有;第二步将分好的三组分配到3个乡镇,其分法有所以满足条件得分配的方案有3.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1804.(09全国卷)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有解:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法.5.(09浙江卷)甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).解:对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种.三.典例剖析例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类计数原理知,符合题意的两位数的个数共有:8+7+6+5+4+3+2+1=36(个).方法二按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个,所以按分类计数原理共有:1+2+3+4+5+6+7+8=36(个).练习:1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?解当一个加数是1时,另一个加数只能是20,1种取法.当一个加数是2时,另一个加数可以是19,20,2种取法.当一个加数是3时,另一个加数可以是18,19,20,3种取法.……当一个加数是10时,另一个加数可以是11,12,…,20,10种取法.当一个加数是11时,另一个加数可以是12,13,…,20,9种取法.……当一个加数是19时,另一个加数是20,1种取法.由分类计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.练习:2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?解先分三步选号,再计算总钱数.按号段选号,分成三步.第一步从01至17中选3个连续号,有15种选法;第二步从19至29中选2个连续号,有10种选法;第三步从30至36中选1个号,有7种选法.由分步计数原理可知,满足要求的号共有15×10×7=1050(注),故至少要花1050×2=2100(元).例3(16分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种). 4分(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5040(种). 8分(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,14分所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种). 16分练习:3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类计数原理,共有6+7+8=21种不同的选法.(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步计数原理,共有6×7×8=336种不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.四.自主检测一.选择题1.(09北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C解:本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有(个),当0不排在末位时,有(个),于是由分类计数原理,得符合题意的偶数共有(个).故选B.2.(08·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种 B.12种 C.24种 D.48种答案123.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36解:解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有=12种排法三类之和为24+12+12=48种。二、填空题4.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种.答案325.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡答案59046.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1942的“简单的”有序数对的个数是.答案300三、解答题7.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四个都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能的情况,于是共有:4×4×4=43=64种可能的情况.8.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260种涂色方法.9.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点;∴共有2+2+3+3+5+5=20(个)点.10.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?解设由左到右五块田中要种a,b,c三种作物,不妨先设第一块种a,则第二块可种b,c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由分步计数原理共有1×2×2×2×2=16.其中要去掉ababa和acaca两种方法.故a种作物种在第一块田中时的种法数有16-2=14(种).同理b种或c种作物种在第一块田中时的种法数也都为14种.所以符合要求的种植方法共有3×(2×2×2×2-2)=3×(16-2)=42(种).第二课排列与组合一.知识梳理排列组合1.概念2.公式3.性质二.基础自测1.(09北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为;解:本题主要考查排列组合知识以及分步计数原理知识.属于基础知识、基本运算的考查.2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,于是由分步计数原理,符合题意的偶数共有(个).故选C.2.(09湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有解:5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有××=60种,故选C3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有种.(用式子表示)答案A4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).答案-5.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).答案390三.典例剖析例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.解(1)方法一要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A种站法,然后其余5人在另外5个位置上作全排列有A种站法,根据分步计数原理,共有站法:A·A=480(种).方法二由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A种站法,然后中间4人有A种站法,根据分步计数原理,共有站法:A·A=480(种).方法三若对甲没有限制条件共有A种站法,甲在两端共有2A种站法,从总数中减去这两种情况的排列数,即共有站法:A-2A=480(种).(2)方法一先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A种站法,再把甲、乙进行全排列,有A种站法,根据分步计数原理,共有A·A=240(种)站法.方法二先把甲、乙以外的4个人作全排列,有A种站法,再在5个空档中选出一个供甲、乙放入,有A种方法,最后让甲、乙全排列,有A种方法,共有A·A·A=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A种站法,故共有站法为A·A=480(种).也可用“间接法”,6个人全排列有A种站法,由(2)知甲、乙相邻有A·A=240种站法,所以不相邻的站法有A-A·A=720-240=480(种).(4)方法一先将甲、乙以外的4个人作全排列,有A种,然后将甲、乙按条件插入站队,有3A种,故共有A·(3A)=144(种)站法.方法二先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A种方法,最后对甲、乙进行排列,有A种方法,故共有A·A·A=144(种)站法.(5)方法一首先考虑特殊元素,甲、乙先站两端,有A种,再让其他4人在中间位置作全排列,有A种,根据分步计数原理,共有A·A=48(种)站法.方法二首先考虑两端两个特殊位置,甲、乙去站有A种站法,然后考虑中间4个位置,由剩下的4人去站,有A种站法,由分步计数原理共有A·A=48(种)站法.(6)方法一甲在左端的站法有A种,乙在右端的站法有A种,且甲在左端而乙在右端的站法有A种,共有A-2A+A=504(种)站法.方法二以元素甲分类可分为两类:①甲站右端有A种站法,②甲在中间4个位置之一,而乙不在右端有A·A·A种,故共有A+A·A·A=504(种)站法.练习:1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3125的数.解(1)先排个位,再排首位,共有A·A·A=144(个).(2)以0结尾的四位偶数有A个,以2或4结尾的四位偶数有A·A·A个,则共有A+A·A·A=156(个).(3)要比3125大,4、5作千位时有2A个,3作千位,2、4、5作百位时有3A个,3作千位,1作百位时有2A个,所以共有2A+3A+2A=162(个).例2男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.解(1)第一步:选3名男运动员,有C种选法.第二步:选2名女运动员,有C种选法.共有C·C=120种选法. (2)方法一至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类计数原理可得总选法数为CC+CC+CC+CC=246种.方法二“至少1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C种选法,其中全是男运动员的选法有C种.所以“至少有1名女运动员”的选法为C-C=246种.(3)方法一可分类求解:“只有男队长”的选法为C;“只有女队长”的选法为C;“男、女队长都入选”的选法为C;所以共有2C+C=196种选法. 方法二间接法:从10人中任选5人有C种选法.其中不选队长的方法有C种.所以“至少1名队长”的选法为C-C=196种. 12分(4)当有女队长时,其他人任意选,共有C种选法.不选女队长时,必选男队长,共有C种选法.其中不含女运动员的选法有C种,所以不选女队长时的选法共有C-C种选法.所以既有队长又有女运动员的选法共有C+C-C=191种. 练习:2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解(1)只需从其他18人中选3人即可,共有C=816(种).(2)只需从其他18人中选5人即可,共有C=8568(种).(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有CC+C=6936(种).(4)方法一(直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有CC+CC+CC+CC=14656(种).方法二(间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C-(C+C)=14656(种).例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步计数原理,共有CCC×A=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有·A种方法.故共有C(CCA+·A)=84种.练习:3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.解(1)分三步:先选一本有C种选法;再从余下的5本中选2本有C种选法;对于余下的三本全选有C种选法,由分步计数原理知有CCC=60种选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有CCCA=360种选法.(3)先分三步,则应是CCC种选法,但是这里面出现了重复,不妨记六本书为A、B、C、D、E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则CCC种分法中还有(AB、EF、CD),(CD、AB、EF)、(CD、EF、AB)、(EF、CD、AB)、(EF、AB、CD)共有A种情况,而且这A种情况仅是AB、CD、EF的顺序不同,因此,只算作一种情况,故分法有=15种.(4)在问题(3)的工作基础上再分配,故分配方式有·A=CCC=90种.四.自主检测一.选择题1.(08上海)组合数Ceq\a(r,n)(n>r≥1,n、r∈Z)恒等于()A.eq\f(r+1,n+1)Ceq\a(r-1,n-1)B.(n+1)(r+1)Ceq\a(r-1,n-1)C.nrCeq\a(r-1,n-1)D.eq\f(n,r)Ceq\a(r-1,n-1)答案D2.(09全国卷Ⅱ)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有() A.6种B.12种C.30种D.36种解:用间接法即可.种.故选C3.(09辽宁卷)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()(A)70种(B)80种(C)100种(D)140种解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C4间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.二、填空题4.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有种.答案105.平面内有四个点,平面内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答)答案721206.(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种.解:可以分情况讨论,甲去,则乙不去,有=480种选法;②甲不去,乙去,有=480种选法;③甲、乙都不去,有=360种选法;共有1320种不同的选派方案三、解答题7.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?解可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有CA种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有A种方案.由分类计数原理可知共有CA+A=60种方案.8.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.解(1)一名女生,四名男生,故共有C·C=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C·C=165(种).(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C·C+C·C=825(种).或采用间接法:C-C=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为C·C+C·C+C=966(种).9.已知平面∥,在内有4个点,在内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解(1)所作出的平面有三类:①内1点,内2点确定的平面,有C·C个;②内2点,内1点确定的平面,有C·C个;③,本身.∴所作的平面最多有C·C+C·C+2=98(个).(2)所作的三棱锥有三类:①内1点,内3点确定的三棱锥,有C·C个;②内2点,内2点确定的三棱锥,有C·C个;内3点,内1点确定的三棱锥,有C·C个.∴最多可作出的三棱锥有:C·C+C·C+C·C=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等,且平面∥,∴体积不相同的三棱锥最多有C+C+C·C=114(个).10.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?解∵前排中间3个座位不能坐,∴实际可坐的位置前排8个,后排12个.(1)两人一个前排,一个后排,方法数为C·C·A种;(2)两人均在后排左右不相邻,共A-A·A=A种;(3)两人均在前排,又分两类:①两人一左一右,共C·C·A种;②两人同左同右,有2(A-A·A)种.综上可知,不同排法种数为C·C·A+A+C·C·A+2(A-A·A)=346种.第三课二项式定理一.知识梳理1.(a+b)n=(n∈N),这个公式称做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数叫做二项式系数.式中的叫做二项展开式的通项,用Tr+1表示,即通项公式Tr+1=是表示展开式的第r+1项.2.二项式定理中,二项式系数的性质有:①在二项式展开式中,与首末两项“等距离”的两项二项式系数相等,即:②如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即当n是偶数时,n+1是奇数,展开式共有n+1项,中间一项,即:第项的二项式系数最大,为;当n是奇数时,n+1是偶数,展开式共有n+1项,中间两项,即第项及每项,它们的二项式系数最大,为③二项式系数的和等于—————————,即————————————④二项展开式中,偶数项系数和等于奇数项的系数和=即⑤展开式中相邻两项的二项式系数的比是:3.二项式定理主要有以下应用①近似计算②解决有关整除或求余数问题③用二项式定理证明一些特殊的不等式和推导组合公式(其做法称为“赋值法”)注意二项式定理只能解决一些与自然数有关的问题④杨辉三角形二,基础自测1.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=.答案102.在(a2-2a)n的展开式中,则下列说法错误的有个.①没有常数项②当且仅当n=2时,展开式中有常数项③当且仅当n=5时,展开式中有常数项④当n=5k(k∈N*)时,展开式中有常数项答案33.若多项式(x+1)n-C(x+1)n-1+…+(-1)rC(x+1)n-r+…+(-1)nC=a0xn+a1xn-1+…+an-1x+an,则a0+a1+…+an-1+an=.答案14.(09浙江卷理)在二项式的展开式中,含的项的系数是()A.B.C.D.解:对于,对于,则的项的系数是5.(09陕西卷文)若,则的值为。解:由题意容易发现,则,同理可以得出,………亦即前2008项和为0,则原式==.三.典例剖析例1在二项式(+)n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.解∵二项展开式的前三项的系数分别是1,,n(n-1),∴2·=1+n(n-1),解得n=8或n=1(不合题意,舍去),∴Tk+1=Cx=C2-kx4-k,当4-k∈Z时,Tk+1为有理项,∵0≤k≤8且k∈Z,∴k=0,4,8符合要求.故有理项有3项,分别是T1=x4,T5=x,T9=x-2.∵n=8,∴展开式中共9项,中间一项即第5项的二项式系数最大.T5=x.练习:1.在(3x-2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.解(1)二项式系数最大的项是第11项,T11=C310(-2)10x10y10=C610x10y10.(2)设系数绝对值最大的项是第r+1项,于是,化简得,解得7≤r≤8.所以r=8,即T9=C312·28·x12y8是系数绝对值最大的项.(3)由于系数为正的项为奇数项,故可设第2r-1项系数最大,于是,化简得.解之得r=5,即2×5-1=9项系数最大.T9=C·312·28·x12y8.例2已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+…+|a7|.解令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1 ①令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37 ②(1)∵a0=C=1,∴a1+a2+a3+…+a7=-2.(2)(①-②)÷2,得a1+a3+a5+a7==-1094.(3)(①+②)÷2,得a0+a2+a4+a6==1093.(4)∵(1-2x)7展开式中,a0,a2,a4,a6都大于零,而a1,a3,a5,a7都小于零,∴|a0|+|a1|+|a2|+…+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7),∴由(2)、(3)即可得其值为2187.练习:2.求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.解设x(1-x)4+x2(1+2x)5+x3(1-3x)7=a0+a1x+a2x2+…+anxn在原式中,令x=1,则1×(1-1)4+12×(1+2)5+13×(1-3)7=115,∴展开式中各项系数的和为115.例3(1)已知n∈N*,求证:1+2+22+23+…+25n-1能被31整除;(2)求0.9986的近似值,使误差小于0.001.(1)证明∵1+2+22+23+…+25n-1==25n-1=32n-1=(31+1)n-1=31n+C·31n-1+C·31n-2+…+C·31+1-1=31(31n-1+C·31n-2+…+C)显然括号内的数为正整数,故原式能被31整除. (2)解∵0.9986=(1-0.002)6=1-C(0.002)+C(0.002)2-C(0.002)3+… 第三项T3=15×(0.002)2=0.00006<0.001,以后各项更小,∴0.9986≈1-0.012=0.988. 练习:3.求证:3n>(n+2)·2n-1(n∈N*,n>2).证明利用二项式定理3n=(2+1)n展开证明.因为n∈N*,且n>2,所以3n=(2+1)n展开后至少有4项.(2+1)n=2n+C·2n-1+…+C·2+1≥2n+n·2n-1+2n+1>2n+n·2n-1=(n+2)·2n-1,故3n>(n+2)·2n-1.四.自主检测一.选择题1.(08安徽卷)设则中奇数的个数为()A.2 B.3 【答案】A2.(09北京卷理)若为有理数),则()A.45B.55C.70D.80【答案】C【解析】本题主要考查二项式定理及其展开式.属于基础知识、基本运算的考查.∵,由已知,得,∴.故选C.3.(08江西卷)展开式中的常数项为DA.1B.46C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市公共自行车系统建设合同
- 2024年度专利许可合同详细条款及许可标的
- 2024土地租赁合同简单
- 2024年居民用热供应合同版B版
- 2024年定制型电子协议保密条款模板版B版
- 2024年上海地区标准离婚合同范本版B版
- 2024专业家装服务协议范本版B版
- 2024年度劳动协议延续协议范本版B版
- 2024年名优茶叶购销合作协议模板
- 2024会所装修合同范本共
- 国开 2024 年秋《机电控制工程基础》形考任务一答案
- 《技术经济学》练习题集
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 数字经济学-课件 第1章 数字经济学基础
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》测试卷(含答案)
- 法律法规知识测试题库(共200题)
- 2024年浙江省初中学业水平考试社会试题
- 中金在线测评多少题
- 河南省濮阳市(2024年-2025年小学四年级语文)人教版小升初真题(上学期)试卷及答案
- 医学英语学习通超星期末考试答案章节答案2024年
- 国家开放大学《人文英语4》边学边练参考答案
评论
0/150
提交评论