黑龙江省大庆市2022年八年级数学第一学期期末调研试题含解析_第1页
黑龙江省大庆市2022年八年级数学第一学期期末调研试题含解析_第2页
黑龙江省大庆市2022年八年级数学第一学期期末调研试题含解析_第3页
黑龙江省大庆市2022年八年级数学第一学期期末调研试题含解析_第4页
黑龙江省大庆市2022年八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等 B.两个锐角对应相等C.一条直角边和斜边对应相等 D.一个锐角和锐角所对的直角边对应相等2.若分式的值为0,则()A.x=-2 B.x=0 C.x=1 D.x=1或-23.若中刚好有,则称此三角形为“可爱三角形”,并且称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是().A.或 B.或 C.或 D.或或4.下列运算中,正确的是()A.(x3)2=x5 B.(﹣x2)2=x6 C.x3•x2=x5 D.x8÷x4=x25.计算的结果为()A.m﹣1 B.m+1 C. D.6.-8的立方根是()A.±2 B.-2 C.±4 D.-47.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an8.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论9.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.10.如果一次函数的图象与直线平行且与直线y=x-2在x轴上相交,则此函数解析式为()A. B. C. D.11.如图,是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A. B. C. D.12.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()A. B. C. D.二、填空题(每题4分,共24分)13.观察下列各式:;;;……根据前面各式的规律可得到________.14.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.15.函数自变量的取值范围是______.16.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为_____.17.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为___________.18.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.三、解答题(共78分)19.(8分)如图,在中,,是高线,,,(1)用直尺与圆规作三角形内角的平分线(不写作法,保留作图痕迹).(2)在(1)的前提下,判断①,②中哪一个正确?并说明理由.20.(8分)分解因式:21.(8分)计算(1)(2)分解因式:22.(10分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589______乙89969180____________(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按,计算哪个学生数学综合素质测试成绩更好?请说明理由.23.(10分)如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.24.(10分)某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.(1)求第1次每支2B铅笔的进价;(2)若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?25.(12分)如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.26.精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【详解】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;

B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;

C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA来判定两个直角三角形全等;故本选项正确;

D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA或AAS来判定两个直角三角形全等;故本选项正确;

故选:B.【点睛】本题考查了直角全等三角形的判定.注意,判定两个三角形全等时,必须有边的参与.2、C【分析】要使分式的值等于0,则分子等于0,且分母不等于0.【详解】若分式的值为0,则x-1=0,且x+2≠0,所以,x=1,x≠-2,即:x=1.故选C【点睛】本题考核知识点:分式值为0的条件.解题关键点:熟记要使分式的值等于0,则分子等于0,且分母不等于0.3、C【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC,且,情况一:当∠B是底角时,则另一底角为∠A,且∠A=∠B=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C是底角,则另一底角为∠A,且∠B=2∠A=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C.【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.4、C【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【详解】A.(x3)2=x6,故此选项错误;B.(﹣x2)2=x4,故此选项错误;C.x3•x2=x5,正确;D.x8÷x4=x4,故此选项错误.故选:C.【点睛】此题考查积的乘方运算,同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5、D【分析】把第二个分式变形后根据同分母分式的加减法法则计算即可.【详解】解:原式====.故选:D.【点睛】本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.6、B【分析】根据立方根的定义进行解答即可.【详解】∵,∴-8的立方根是-1.故选B.【点睛】本题考查了立方根,熟练掌握概念是解题的关键.7、B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.8、B【分析】利用反例判断命题为假命题的方法对各选项进行判断.【详解】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.【点睛】此题主要考查命题真假的判断,解题的关键是熟知举反例的方法.9、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.10、A【分析】设所求的直线的解析式为,先由所求的直线与平行求出k的值,再由直线与直线y=x-2在x轴上相交求出b的值,进而可得答案.【详解】解:设所求的直线的解析式为,∵直线与直线平行,∴,∵直线y=x-2与x轴的交点坐标为(2,0),直线与直线y=x-2在x轴上相交,∴,解得:b=﹣3;∴此函数的解析式为.故选:A.【点睛】本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.11、B【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:=--===,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.12、D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.二、填空题(每题4分,共24分)13、-1【分析】根据题目中的规律可看出,公式左边的第一项为(x-1),公式左边的第二项为x的n次幂开始降次排序,系数都为1,公式右边为-1即可.【详解】由题目中的规律可以得出,-1,故答案为:-1.【点睛】本题考查了整式乘除相关的规律探究,掌握题目中的规律探究是解题的关键.14、【详解】试题分析:如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.15、【分析】根据分母不为零分式有意义,可得答案.【详解】解:由题意,得

1-x≠0,解得x≠1,故答案为x≠1.【点睛】本题考查了函数值变量的取值范围,利用分母不为零得出不等式是解题关键.16、1【分析】设出一次函数的一般式,然后用待定系数法确定函数解析式,最后将x=0代入即可.【详解】解:设一次函数的解析式为y=kx+b(k≠0),由题意得:解得:所以函数解析式为:y=-x+1当x=0时,y=1,即p=1.故答案是:1.【点睛】本题考查了用待定系数法求一次函数解析式,解题的关键在于理解一次函数图象上的点坐标一定适合函数的解析式.17、(2,-3).【解析】试题分析:根据平面直角坐标系中,关于x轴对称的点的坐标特征可知,点A(2,3)关于x轴的对称点坐标为(2,-3).考点:关于坐标轴对称的点的坐标特征.18、b>c>a.【分析】由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.三、解答题(共78分)19、(1)见解析;(2)②对,证明见解析.【分析】(1)以点A为圆心,任意长为半径画弧,分别与AB,AC相交于一点,然后以这两点为圆心,大于这两点距离的一半画弧,两弧交于一点,连接交点与A的直线,与BC相交于点E,则AE为的平分线;(2)由三角形内角和定理和角平分线定理,得到,由余角性质得到∠CAD=,即可求出.【详解】解:(1)如图所示,AE为所求;(2)②正确;理由如下:∵,,∴∠BAC=,∵AE平分,∴∠CAE=,∵AD是高,∴∠ADC=90°,∴∠CAD=,∴,∴;【点睛】本题考查了角平分线性质,画角平分线,以及三角形的内角和定理,解题的关键是掌握角平分线的性质和三角形的内角和定理,正确求出.20、【分析】先提取公因式,然后在利用公式法分解因式即可.【详解】原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、(1)-1;(2)【分析】(1)根据零指数幂、负整数指数幂的法则计算;(2)现用平方差公式,再运用完全平方公式.【详解】解:(1)=1-2=-1;(2)===.【点睛】本题考查零指数幂、负整数指数幂的法则,平方差公式与完全平方公式综合分解因式,熟练掌握乘法公式是关键.22、(1)表格详见解析,甲数学综合素质测试成绩更稳定;(2)乙的成绩更好,理由详见解析.【分析】(1)根据求平均数的公式和求方差的公式进行求解,即可得到答案;(2)根据加权平均数计算甲和乙的成绩,即可得到答案.【详解】解::(1)甲的平均成绩=(87+93+91+85)÷4=89;

乙的平均成绩(89+96+91+80)÷4=89;

甲的方差:S甲2=[(87-89)2+(93-89)2+(91-89)2+(85-89)2]=×(16+4+4+16)=10;

乙的方差:S乙2=[(89-89)2+(96-89)2+(91-89)2+(80-89)2]=×(0+49+4+81)=33.5;如下表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲879391858910乙899691808933.5∵,,∴甲数学综合素质测试成绩更稳定;(2)若按计分,则乙的成绩更好,理由如下:甲的分数(分);乙的分数(分).∵,∴乙的成绩更好.【点睛】此题考查了平均数和加权平均数,用到的知识点是平均数和加权平均数,掌握它们的计算公式是本题的关键.23、(1)详见解析;(2)①详见解析;②详见解析.【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE,DF.如图3所示∵△ABC,△ADC是等边三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴点D到AF,EF的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.24、(1)第1次每支2B铅笔的进价为1元;(2)每支2B铅笔的售价至少是2元.【分析】(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,根据数量=总价÷单价结合第二次比第一次多购进100支,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一次购进2B铅笔的数量,用其加100可求出第二次购进数量,设每支2B铅笔的售价为y元,根据利润=单价×数量﹣进价结合总利润不低于600元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,依题意,得﹣=100,解得:x=1.经检验,x=1是原方程的解,且适合题意.答:第1次每支2B铅笔的进价为1元.(2)600÷1=120(支),120+100=220(支)设每

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论