2022-2023学年山东省聊城市茌平县数学九年级第一学期期末经典试题含解析_第1页
2022-2023学年山东省聊城市茌平县数学九年级第一学期期末经典试题含解析_第2页
2022-2023学年山东省聊城市茌平县数学九年级第一学期期末经典试题含解析_第3页
2022-2023学年山东省聊城市茌平县数学九年级第一学期期末经典试题含解析_第4页
2022-2023学年山东省聊城市茌平县数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一元二次方程的解为()A. B., C., D.,2.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.3.如图,在△ABO中,∠B=90º,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是().A.⊙P的半径为B.经过A,O,B三点的抛物线的函数表达式是C.点(3,2)在经过A,O,B三点的抛物线上D.经过A,O,C三点的抛物线的函数表达式是4.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.5.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.6.用配方法解方程x2+4x+1=0时,方程可变形为()A. B. C. D.7.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.8.如图,在中,,则的值为()A. B. C. D.9.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.10.已知点在抛物线上,则下列结论正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.12.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.13.因式分解:_______________________.14.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.15.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.16.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.17.如果3是数和6的比例中项,那么__________18.如图,菱形的顶点C的坐标为,顶点A在x轴的正半轴上.反比例函数的图象经过顶点B,则k的值为__.三、解答题(共66分)19.(10分)如图,在中,过半径OD中点C作AB⊥OD交O于A,B两点,且.(1)求OD的长;(2)计算阴影部分的面积.20.(6分)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.21.(6分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.22.(8分)2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)23.(8分)如图,将绕点顺时针旋转得到,点恰好落在的延长线上,连接.分别交于点交于点.求的角度;求证:.24.(8分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?25.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.26.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?

参考答案一、选择题(每小题3分,共30分)1、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】∴或∴,故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.2、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.3、D【分析】A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.【详解】解:如图所示,连接PC,∵圆P与AB相切于点C,所以PC⊥AB,又∵∠B=90º,所以△ACP∽△ABO,设OP=x,则OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半径为,故A选项错误;过B作BD⊥OA交OA于点D,∵∠B=90º,BD⊥OA,由勾股定理可得:,由面积相等可得:∴,∴由射影定理可得,∴∴,设经过A,O,B三点的抛物线的函数表达式为;将A(5,0),O(0,0),代入上式可得:解得,,c=0,经过A,O,B三点的抛物线的函数表达式为,故B选项错误;过点C作CE⊥OA交OA于点E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴点C坐标为,故选项C错误;设经过A,O,C三点的抛物线的函数表达式是,将A(5,0),O(0,0),代入得,解得:,∴经过A,O,C三点的抛物线的函数表达式是,故选项D正确.【点睛】本题考查相似三角形、二次函数、圆等几何知识,综合性较强,解题的关键是要能灵活运用相似三角形的性质计算.4、D【分析】随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.5、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A【点睛】本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.6、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x2+4x+4-3=0,即(x+2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.7、A【分析】首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.8、D【解析】过点A作,垂足为D,在中可求出AD,CD的长,在中,利用勾股定理可求出AB的长,再利用正弦的定义可求出的值.【详解】解:过点A作,垂足为D,如图所示.在中,,;在中,,,.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.9、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.10、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况二、填空题(每小题3分,共24分)11、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、【分析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.14、-1【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.15、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.16、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.17、【分析】根据比例的基本性质知道,在比例里两个外项的积等于两个内项的积.【详解】因为,在比例里两个外项的积等于两个内项的积,所以,6x=3×3,x=9÷6,x=,故答案为:.【点睛】本题考查了比例中项的概念,熟练掌握概念是解题的关键.18、1【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值.【详解】∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,

4=,解得:k=1.故答案为1.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.三、解答题(共66分)19、(1);(2)【分析】(1)根据垂径定理求出BC=,在Rt△OCB中,由勾股定理列方程求解;(2)根据扇形面积公式和三角形面积公式即可求得阴影部分的面积.【详解】解:如图,连接OB,∵AB⊥OD,∴AC=BC=,∵C为OD中点,∴OC=,设OD=x,在Rt△OCB中,由勾股定理得,OC2+BC2=OB2,∴()2+()2=x2,解得x=2∴OD=2.(2)S△OCB=∵OC=1,OB=2,∴∠BOC=60°,∴S扇BOD=,∴阴影部分的面积为:【点睛】本题考查利用垂径定理求半径长及扇形面积公式,垂径定理是解决圆中线段长的常用重要定理.20、(1)详见解析;(2)60°.【分析】(1)根据SAS即可证明:△ABC≌△EDF;(2)由(1)可知∠HDB=∠HBD,再利用三角形的外角关系即可求出∠HBD的度数.【详解】(1)∵AD=BE,∴AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∴∠HDB=∠HBD,∵∠CHD=∠HDB+∠HBD=120°,∴∠HBD=60°.【点睛】本题考查了全等三角形的判定与性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.21、,.【分析】连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到∠AFE=60°;再推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到涂色部分的面积.【详解】连接,是半圆上的三等分点,则,,∵,∴,;,∴是等边三角形,,所以.【点睛】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)随机选取一位作为引导员,选到女生的概率为;(2)甲、乙两位志愿者选择同一个岗位的概率为.【分析】(1)直接利用概率公式求出即可;

(2)用列表法表示所有可能出现的情况,共9中可能的结果数,选择同一岗位的有三种,可求出概率.【详解】(1)5名志愿者中有2名女生,因此随机选取一位作为引导员,选到女生的概率为,即:P=,答:随机选取一位作为引导员,选到女生的概率为.(2)用列表法表示所有可能出现的情况:∴.答:甲、乙两位志愿者选择同一个岗位的概率为.【点睛】本题考查了随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.23、(1);(2)见解析【解析】(1)根据题意将绕点顺时针旋转得到,可知≌,根据全等三角形性质和外角性质可求得∠AFE的度数.(2)根据(1)中≌可知对应角相等,对应边相等,来证明(ASA).【详解】解:(1)由绕顺时针旋转得到又∠AFB=∠ACB=证明:在和中【点睛】本题考查的是三角形旋转造全等,利用全等三角形的性质和外角的性质来求得外角的度数和判定另外两个三角形全等.24、(1)20;(2)65,1.【分析】(1)每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数列方程,即可得到结论;

(2)设每件商品涨价m元,每星期该商品的利润为W,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x元,

根据题意得,(60-40+x)(300-10x)=4000,

解得:x1=20,x2=-10,(不合题意,舍去),

答:每件商品涨价20元时,每星期该商品的利润是4000元;

(2)设每件商品涨价m元,每星期该商品的利润为W,

∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1

∴当m=5时,W最大值.

∴60+5=65(元),

答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.25、(2)y=﹣x2﹣x+2;(2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.【解析】(2)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论