![2022年山西省高中学阶段教育学校九年级数学第一学期期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view/437aa9107ffdddf8670802f322f4b283/437aa9107ffdddf8670802f322f4b2831.gif)
![2022年山西省高中学阶段教育学校九年级数学第一学期期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view/437aa9107ffdddf8670802f322f4b283/437aa9107ffdddf8670802f322f4b2832.gif)
![2022年山西省高中学阶段教育学校九年级数学第一学期期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view/437aa9107ffdddf8670802f322f4b283/437aa9107ffdddf8670802f322f4b2833.gif)
![2022年山西省高中学阶段教育学校九年级数学第一学期期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view/437aa9107ffdddf8670802f322f4b283/437aa9107ffdddf8670802f322f4b2834.gif)
![2022年山西省高中学阶段教育学校九年级数学第一学期期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view/437aa9107ffdddf8670802f322f4b283/437aa9107ffdddf8670802f322f4b2835.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位2.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)3.从﹣1,0,1三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率为()A. B. C. D.4.下列图形中,是中心对称图形的是()A. B. C. D.5.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣36.给出四个实数,2,0,-1,其中负数是(
)A. B.2 C.0 D.-17.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.8.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.9.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.10.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是()A.平均数 B.众数 C.中位数 D.方差二、填空题(每小题3分,共24分)11.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.12.“永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名.为测得其高度,低空无人机在A处,测得楼顶端B的仰角为30°,楼底端C的俯角为45°,此时低空无人机到地面的垂直距离AE为23米,那么永定楼的高度BC是______米(结果保留根号).13.如图,在中,,点为的中点.将绕点逆时针旋转得到,其中点的运动路径为,则图中阴影部分的面积为______.14.如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则的值是.15.地物线的部分图象如图所示,则当时,的取值范围是______.16.如图,边长为3的正六边形内接于,则图中阴影部分的面积和为_________(结果保留).17.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.18.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.三、解答题(共66分)19.(10分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=2,BP=1,求⊙O的半径.20.(6分)如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.21.(6分)计算:(1)解不等式组(2)化简:22.(8分)如图,在四边形中,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.(1)求证:;(2)若,试求四边形的对角线的长.23.(8分)如图1,在矩形ABCD中,AE⊥BD于点E.(1)求证:BEBC=AECD.(2)如图2,若点P是边AD上一点,且PE⊥EC,求证:AEAB=DEAP.24.(8分)在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究.(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_________;(取三件中任意一件的可能性相同)(2)小明发现在、两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少.25.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,则拉线CE的长为______________m(结果保留根号).26.(10分)如图,是一个锐角三角形,分别以、向外作等边三角形、,连接、交于点,连接.(1)求证:(2)求证:
参考答案一、选择题(每小题3分,共30分)1、A【解析】先确定抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),
因为点(0,0)向左平移3个单位长度后得到(-3,0),
所以把抛物线y=x1向左平移3个单位得到抛物线y=(x+3)1.
故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.3、C【分析】列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:根据题意列表如下:﹣110﹣1﹣﹣﹣(1,﹣1)(0,﹣1)1(﹣1,1)﹣﹣﹣(0,1)0(﹣1,0)(1,0)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率=;故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点的坐标特征.4、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.5、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【点睛】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.6、D【分析】根据负数的定义,负数小于0即可得出答案.【详解】根据题意:负数是-1,故答案为:D.【点睛】此题主要考查了实数,正确把握负数的定义是解题关键.7、A【详解】试题分析:由错误的结果求出x的值,代入原式计算即可得到正确结果.解:根据题意得:16+x=17,解得:x=3,则原式=16﹣x=16﹣1=15,故选A考点:解一元一次方程.8、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10、C【分析】根据中位数的定义求解可得.【详解】原来这组数据的中位数为=2,无论去掉哪个数据,剩余三个数的中位数仍然是2,故选:C.【点睛】此题考查数据平均数、众数、中位数方差的计算方法,掌握正确的计算方法才能解答.二、填空题(每小题3分,共24分)11、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共个数,大于的数有个,(大于);故答案为.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、【分析】过点A作BC的垂线,垂足为D,则∠DAC=45°,∠BAD=30°,进一步推出AD=CD=AE=米,再根据tan∠BAD==,从而求出BD的值,再由BC=BD+CD即可得到结果.【详解】解:如图所示,过点A作AD⊥BC于D,则∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案为.【点睛】本题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.13、【分析】连接,设AC、DE交于点N,如图,根据题意可得的度数和BM的长度,易证为的中位线,故MN可求,然后利用S阴影=S扇形MBE,代入相关数据求解即可.【详解】解:连接,设AC、DE交于点N,如图,由题意可知,,∴,∵,,且为的中点,∴为的中位线,∴,,∴S阴影=S扇形MBE.【点睛】本题考查了旋转的性质、三角形的中位线定理、扇形面积的计算等知识,属于常考题型,熟练掌握旋转的性质、将所求不规则图形的面积转化为规则图形的面积的和差是解题的关键.14、【解析】EC=2BE,得,由于AD//BC,得15、或【分析】根据二次函数的对称性即可得出二次函数与x轴的另一个交点为(3,0),当时,图像位于x轴的上方,故可以得出x的取值范围.【详解】解:由图像可得:对称轴为x=1,二次函数与x轴的一个交点为(-1,0)则根据对称性可得另一个交点为(3,0)∴当或时,故答案为:或【点睛】本题主要考查的是二次函数的对称性,二次函数的图像是关于对称轴对称的,掌握这个知识点是解题的关键.16、【分析】将阴影部分合并即可得到扇形的面积,利用扇形面积公式计算即可.【详解】∵ABCDEF是正六边形,∴∠AOE=120°,阴影部分的面积和=.故答案为:.【点睛】本题考查扇形面积计算,关键在于记住扇形的面积公式.17、【分析】根据直角三角形斜边中线的性质可得OC=OA=OB=AB,根据等腰三角形的性质可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性质可得∠ONC=∠OCB,,可得OM=MN,利用等量代换可得∠ONC=∠B,即可证明△CNO∽△ABC,利用外角性质可得∠ACO=∠MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】∵O为Rt△ABC斜边中点,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.18、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,三、解答题(共66分)19、(1)见解析;(2)1【分析】(1)由圆周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,证出CD∥BF,得出AB⊥BF,即可得出结论;(2)设⊙O的半径为r,连接OD.由垂径定理得出PD=PC=CD=,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.【详解】解:(1)证明:∵弧AC=弧AC,∴∠ABC=∠ADC,∵∠AFB=∠ABC,∴∠ADC=∠AFB,∴CD∥BF,∵CD⊥AB,∴AB⊥BF,∵AB是圆的直径,∴直线BF是⊙O的切线;(2)解:设⊙O的半径为r,连接OD.如图所示:∵AB⊥BF,CD=2,∴PD=PC=CD=,∵BP=1,∴OP=r﹣1在Rt△OPD中,由勾股定理得:r2=(r﹣1)2+()2解得:r=1.即⊙O的半径为1.【点睛】本题考查切线的判定、勾股定理、圆周角定理、垂径定理以及勾股定理和平行线的判定与性质等知识,解题的关键熟练掌握圆周角定理和垂径定理.20、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值为﹣3或,理由见解析【分析】(1)由抛物线y=x2+x+3可求出点C,P,A的坐标,再用待定系数法,可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;(3)先求出正方形的边长,通过△ARM∽△ACO将相关线段用含t的代数式表示出来,再分三种情况进行讨论:当∠O'RP=90°时,当∠PO'R=90°时,当∠O'PR=90°时,分别构造相似三角形,即可求出t的值,其中第三种情况不存在,舍去.【详解】(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,则x2+x+3=0,解得:x1=﹣4,x2=6,B(﹣4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=﹣,∴y=﹣x+3,∴点P坐标为P(2,3),直线AC的解析式为y=﹣x+3;(2)在OC上取点H(0,),连接HF,AH,则OH=,AH=,∵,,且∠HOF=∠FOC,∴△HOF∽△FOC,∴,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;(3)∵正方形OMNG的顶点N恰好落在线段AC上,∴GN=MN,∴设N(a,a),将点N代入直线AC解析式,得,a=﹣a+3,∴a=2,∴正方形OMNG的边长是2,∵平移的距离为t,∴平移后OM的长为t+2,∴AM=6﹣(t+2)=4﹣t,∵RM∥OC,∴△ARM∽△ACO,∴,即,∴RM=2﹣t,如图3﹣1,当∠O'RP=90°时,延长RN交CP的延长线于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴,∵PQ=2+t-2=t,QR=3﹣RM=1+t,∴,解得,t1=﹣3﹣(舍去),t2=﹣3;如图3﹣2,当∠PO'R=90°时,∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,∴∠RO'M=∠EPO',又∵∠PEO'=∠O'MR=90°,∴△PEO'∽△O'MR,∴,即,解得,t=;如图3﹣3,当∠O'PR=90°时,延长O’G交CP于K,延长MN交CP的延长线于点T,∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,∴∠KO'P=∠TPR,又∵∠O'KP=∠T=90°,∴△KO'P∽△TPR,∴,即,整理,得t2-t+3=0,∵△=b2﹣4ac=﹣<0,∴此方程无解,故不存在∠O'PR=90°的情况;综上所述,△O′PR为直角三角形时,t的值为﹣3或.【点睛】本题主要考查二次函数的图象和相似三角形的综合,添加合适的辅助线,构造相似三角形,是解题的关键.21、(1);(2).【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集;(2)根据分式的减法法则即可得.【详解】(1),解不等式①得:,解不等式②得:,则不等式组的解集为;(2),,,,,.【点睛】本题考查了解一元一次不等式组、分式的减法运算,熟练掌握不等式组的解法和分式的运算法则是解题关键.22、(1)见解析;(2).【分析】证明:由绕点顺时针旋转到,利用旋转性质得BC=AC,,由∠ABC=45º,可知∠ACB=90º,由,可证即可,解:连,由绕点顺时针旋转到,得,CD=CE=2,BD=AE,利用等式性质得,∠CDE=45º,利用勾股定理DE=2,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE即可.【详解】证明:绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到,,又即,解:连,绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到,即,又,.【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE⊥BD,利用等式性质证∠DCE=90º,利用勾股定理求DE,结合∠ADC=45º证Rt△ADE,会用勾股定理求AE使问题得以解决.23、(1)详见解析;(2)详见解析.【分析】(1)根据两角对应相等证,由对应边成比例得比例式,化等积式即可;(2)根据两角对应相等证,由对应边成比例得比例式后化等积式,再由AB=CD进行等量代换即可得结论.【详解】解:(1)∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵AE⊥BD∴∵∠AEB=∠C=90°(2)又【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.24、(1)(2)【分析】(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形是轴对称图形,判断出三个图形中轴对称图形的个数,从而可求得答案;(2)画好树状图,根据概率公式计算即可解答.【详解】解:(1)因为:等腰直角三角形,量角器是轴对称图形,所以小明在这三件文具中任取一件,结果是轴对称图形的概率是故答案为:(2)设90°的角即为,60°的角记为,45°的角记为,30°的角记为画树状图如图所示,一共有18种结果,每种结果出现的可能性是相同的,而其中可以拼成的这个角是钝角的结果有12种,∴这个角是钝角的概率是【点睛】此题为轴对称图形与概率的综合应用,考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25、【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】解:过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Fmoc-Phe-bis-Boc-4-guanidino-OH-生命科学试剂-MCE-3788
- Cannabidiphorol-CBDP-生命科学试剂-MCE-5981
- 2025年度区块链技术股份投资协议
- 二零二五年度股权质押合同样本:适用于体育产业股权质押
- 2025年度民宿窗帘墙布温馨家居布置合同
- 二零二五年度股东致行动协议书:文化产业股权合作与数字版权保护协议
- 二零二五年度建筑垃圾处理与简易房屋拆除合同
- 二零二五年度产学研合作聘用及录用合同
- 施工现场施工防化学毒品泄漏制度
- 施工日志填写样本建筑物屋面防水工程
- 2024义务教育数学新课标课程标准2022版考试真题附答案
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 110kV变电站专项电气试验及调试方案
- 外卖星级(商家评分)计算表
- 幕墙施工成品及半成品保护措施
- 2024年执业医师考试-医师定期考核(口腔)笔试参考题库含答案
- 宫颈癌后装治疗及护理
- 2024年度-IATF16949运行培训课件
- 理解师生关系的重要性
- 统编版语文八年级下册第7课《大雁归来》分层作业(原卷版+解析版)
- 2024年湖南省普通高中学业水平考试政治试卷(含答案)
评论
0/150
提交评论