菏泽单县北城三中联考2022年数学八上期末考试模拟试题含解析_第1页
菏泽单县北城三中联考2022年数学八上期末考试模拟试题含解析_第2页
菏泽单县北城三中联考2022年数学八上期末考试模拟试题含解析_第3页
菏泽单县北城三中联考2022年数学八上期末考试模拟试题含解析_第4页
菏泽单县北城三中联考2022年数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某车间20名工人每天加工零件数如下表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是().A.5,5 B.5,6 C.6,6 D.6,52.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.3.如图,边长为4的等边在平面直角坐标系中的位置如图所示,点在轴上,点,在轴上,则点的坐标为()A. B. C. D.4.若过多边形的每一个顶点只有6条对角线,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形5.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°6.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB7.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.8.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>09.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.510.下列命题中是真命题的是()A.三角形的任意两边之和小于第三边B.三角形的一个外角等于任意两个内角的和C.两直线平行,同旁内角相等D.平行于同一条直线的两条直线平行二、填空题(每小题3分,共24分)11.已知,那么的值是________.12.已知a+b=3,ab=2,则a2b+ab2=_______.13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图像.如果小明家今年和去年都是用水150,要比去年多交水费________元.14.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为_________.15.如果的乘积中不含项,则m为__________.16.如图所示,,,,,则的长为__________.17.己知点,,点在轴上运动,当的值最小时,点的坐标为___________.18.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如,此题设“,”,得方程,解得,.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需周才能完成,设甲公司单独完成需周,乙公司单独完成需周,则得到方程_______.利用整体思想,解得__________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.20.(6分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明以灵感,他惊喜的发现,当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明,下面是小明利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示摆放,其中∠DAB=90°,求证:证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a,FC=DE=b,∵请参照上述证法,利用图②完成下面的证明:将两个全等的直角三角形按图②所示摆放,其中∠DAB=90°.求证:21.(6分)(1)解方程:﹔(2)已知,,求代数式的值.22.(8分)(1)解方程:(2)先化简,再求值:,其中.23.(8分)如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.24.(8分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?25.(10分)(1)解方程:.(2)计算:.26.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(-3,0),B(-3,-3),C(-1,-3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据众数、中位数的定义分别进行解答即可.【详解】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;

B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;

C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;

D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.

故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、B【解析】由题意根据等边三角形的性质结合点在平面直角坐标系中的位置进行分析即可得解.【详解】解:∵等边的边长为4,∴BC=4,∵点在轴上,点,在轴上,∴O为BC的中点,BO=2,∴点的坐标为.故选:B.【点睛】本题考查平面直角坐标系中点的位置的确认,结合等边三角形的性质进行分析是解题的关键.4、C【分析】从n边形的一个顶点可以作条对角线.【详解】解:∵多边形从每一个顶点出发都有条对角线,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:C.【点睛】掌握边形的性质为本题的关键.5、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.6、B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB,根据SAS判定定理可知需添加BD=AC,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.8、B【详解】解:A.对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故错误;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故正确;C.若a=b,则的逆命题为若,则a=b,此逆命题为假命题,故错误;D.若a>0,b>0,则的逆命题为若,则a>0,b>0,此逆命题为假命题,故错误.故选B.9、C【解析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C.【点睛】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.10、D【分析】根据三角形的三边关系、三角形的外角性质、平行线的性质、平行公理判断即可.【详解】解:A、三角形的任意两边之和大于第三边,本选项说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角的和,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、平行于同一条直线的两条直线平行,本选项说法是真命题;故选:D.【点睛】本题主要考查真假命题,掌握三角形的三边关系、三角形的外角性质、平行线的性质、平行公理是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据得到b=3a,再代入要求的式子进行计算即可.【详解】∵∴b=3a,∴故答案为:.【点睛】此题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键,本题是一道基础题.12、6【分析】先对a2b+ab2进行因式分解,a2b+ab2=ab(a+b),再将值代入即可求解.【详解】∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案是:6.【点睛】考查了提公因式法分解因式,解题关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.13、210【分析】根据函数图象中的数据可以求得x>120时,l2对应的函数解析式,从而可以求得x=150时对应的函数值,由l1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l2对应的函数解析式为y=kx+b,解:故x>120时,l2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m3),小明去年用水量150m3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14、11【分析】连接AD,交EF于点M,根据的垂直平分线是可知CM=AM,求周长的最小值及求CM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小.【详解】解:连接AD,交EF于点M,∵△ABC为等腰三角形,点为边的中点,底边长为∴AD⊥BC,CD=3又∵面积是24,即,∴AD=8,又∵的垂直平分线是,∴AM=CM,∴周长=CM+DM+CD=AM+DM+CD∴求周长最小值即求AM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小,周长=AD+CD=8+3=11最小.【点睛】本题考查了利用轴对称变换解决最短路径问题,解题的关键是找出对称点,确定最小值的位置.15、【分析】把式子展开,找到x2项的系数和,令其为1,可求出m的值.【详解】=x3+3mx2-mx-2x2-6mx+2m,又∵的乘积中不含项,∴3m-2=1,∴m=.【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1.16、20【分析】在Rt△ABC中根据勾股定理求出AB的长,再求出BD的长即可.【详解】解:∵∠ABC=90°,AC=13,BC=5,∴AB===12,∵∠BAD=90°,AD=16,

∴BD===20.故答案为:20.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17、(1,0)【分析】作P点关于x轴对称点P₁,根据轴对称的性质PM=P₁M,MP+MQ的最小值可以转化为QP₁的最小值,再求出QP₁所在的直线的解析式,即可求出直线与x轴的交点,即为M点.【详解】如图所示,作P点关于x轴对称点P₁,∵P点坐标为(0,1)∴P₁点坐标(0,﹣1),PM=P₁M连接P₁Q,则P₁Q与x轴的交点应满足QM+PM的最小值,即为点M设P₁Q所在的直线的解析式为y=kx+b把P₁(0,﹣1),Q(5,4)代入解析式得:解得:∴y=x-1当y=0时,x=1∴点M坐标是(1,0)故答案为(1,0)【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.18、【分析】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得分式方程组,换元后得关于a和b的二元一次方程组,解得a和b,再根据倒数关系可得x和y的值,从而问题得解.【详解】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:,设,原方程化为:,解得:,∴,故答案为:;.【点睛】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.三、解答题(共66分)19、(1)证明见解析;(2)BH+EH的最小值为1.【解析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【详解】(1)在Rt△ABC中,∠BAC=10°,E为AB边的中点,∴BC=EA,∠ABC=60°,∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC,∴△ADE≌△CDB;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=10°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴EE'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=10°,BC=,∴AB=2,AE'=AE=,∴BE'==1,∴BH+EH的最小值为1.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.20、见解析【分析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,用两种方法表示出,两者相等,整理即可得证.【详解】证明:如图,连接BD,过点B作DE边上的高BF,可得BF=b-a∵,【点睛】本题考查了勾股定理的证明,用两种方法表示出是解题的关键.21、(1);(2)18【分析】(1)根据分式方程的解法直接进行求解即可;(2)先对整式进行因式分解,然后整体代入求解即可.【详解】解:(1)去分母得:,整理解得:;经检验是原方程的解;(2)=,把,代入求解得:原式=.【点睛】本题主要考查分式方程及因式分解,熟练掌握各个运算方法是解题的关键.22、(1)分式方程无解;(2),.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解;

(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.【详解】(1)去分母得:,即,

解得:,

经检验:是分式方程的增根,∴原分式方程无解;(2),当时,原式.【点睛】本题考查了分式的化简求值以及解分式方程,熟练掌握运算法则是解本题的关键.23、(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【分析】(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=∠ABE,∠CDF=∠CDE即可得到结论;(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.【详解】解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=2∠BFD.故答案为:∠BED=2∠BFD;(2)∠BED=3∠BFD.证明如下:同(1)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)同(1)(2)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=n∠BFD.【点睛】本题主要考查了平行线的性质和角平分线、n等分线的运用,解决问题的关键是作辅助线构造内错角,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论