六西格玛绿带培训3_第1页
六西格玛绿带培训3_第2页
六西格玛绿带培训3_第3页
六西格玛绿带培训3_第4页
六西格玛绿带培训3_第5页
已阅读5页,还剩273页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Revision :1.00Date :June20016西格玛绿带培训MaterialsTWO-6-4-20246标准偏差第二天:TestsofHypothesesWeek1recapofStatisticsTerminologyIntroductiontoStudentTdistributionExampleinusingStudentTdistributionSummaryofformulaforConfidenceLimitsIntroductiontoHypothesisTestingTheelementsofHypothesisTesting-----------------------------------------------------Break--------------------------------------------------------------------LargesampleTestofHypothesisaboutapopulationmeanp-Values,theobservedsignificancelevelsSmallsampleTestofHypothesisaboutapopulationmeanMeasuringthepowerofhypothesistestingCalculatingTypeIIErrorprobabilitiesHypothesisExerciseI-----------------------------------------------------Lunch--------------------------------------------------------------------HypothesisExerciseIPresentationComparing2populationMeans:IndependentSamplingComparing2populationMeans:PairedDifferenceExperimentsComparing2populationProportions:F-Test-----------------------------------------------------Break--------------------------------------------------------------------HypothesisTestingExerciseII(paperclip)HypothesisTestingPresentation

第一天wrapup第二天:Analysisofvariance和simplelinearregressionChi-square:AtestofindependenceChi-square:InferencesaboutapopulationvarianceChi-squareexerciseANOVA-AnalysisofvarianceANOVA–Analysisofvariancecasestudy-----------------------------------------------------Break--------------------------------------------------------------------TestingthefittnessofaprobabilitydistributionChi-square:agoodnessoffittestTheKolmogorov-SmirnovTestGoodnessoffitexerciseusingdiceResult和discussiononexercise------------------------------------------------------Lunch-------------------------------------------------------------------Probabilistic关系hipofaregressionmodelFittingmodelwithleastsquareapproachAssumptions和varianceestimatorMakinginferenceabouttheslopeCoefficientofCorrelation和DeterminationExampleofsimplelinearregressionSimplelinearregressionexercise(usingstatapult)------------------------------------------------------Break-------------------------------------------------------------------Simplelinearregressionexercise(con’t)Presentationofresults

第二天wrapupDay3:Multipleregression和modelbuildingIntroductiontomultipleregressionmodelBuildingamodelFittingthemodelwithleastsquaresapproachAssumptionsformodelUsefulnessofamodelAnalysisofvarianceUsingthemodelforestimation和predictionPitfallsinpredictionmodel--------------------------------------------------------Break-----------------------------------------------------------------Multipleregressionexercise(statapult)Presentationformultipleregressionexercise--------------------------------------------------------Lunch------------------------------------------------------------------Qualitativedata和dummyvariablesModelswith2ormorequantitativeindependentvariablesTestingthemodelModelswithonequalitativeindependentvariableComparingslopes和responsecurve--------------------------------------------------------Break-----------------------------------------------------------------ModelbuildingexampleStepwiseregression–anapproachtoscreenoutfactorsDay3wrapupDay4:设计ofExperimentOverviewofExperimentalDesignWhatisadesignedexperimentObjectiveofexperimental设计和itscapabilityinidentifyingtheeffectoffactorsOnefactoratatime(OFAT)versus设计ofexperiment(DOE)formodellingOrthogonality和itsimportancetoDOEH和calculationforbuildingsimplelinearmodelType和usesofDOE,(i.e.linearscreening,linearmodelling,和non-linearmodelling)OFATversusDOE和itsimpactinascreeningexperimentTypesofscreeningDOEs---------------------------------------------------Break----------------------------------------------------------------------PointstonotewhenconductingDOEScreeningDOEexerciseusingstatapultInterpretatingthescreeningDOE’sresult---------------------------------------------------Lunch----------------------------------------------------------------------ModellingDOE(Fullfactoriawithinteractions)InterpretinginteractionoffactorsParetooffactorssignificanceGraphicalinterpretationofDOEresults

某些rulesofthumbinDOE

实例ofModellingDOE和itsanalysis--------------------------------------------------Break-----------------------------------------------------------------------ModellingDOEexercisewithstatapultTargetpractice和confirmationrunDay4wrapupDay5:Statistical流程ControlWhatisStatistical流程ControlControlchart–thevoiceofthe流程

流程controlversus流程capabilityTypesofcontrolchartavailable和itsapplicationObservingtrendsforcontrolchartOutofControlreactionIntroductiontoXbarRChartXbarRChartexampleAssignable和ChancecausesinSPCRuleofthumbforSPCruntest-------------------------------------------------------------Break------------------------------------------------------------XbarRChartexercise(usingDice)IntroductiontoXbarSChartImplementingXbarSChart

为什么XbarSChart?IntroductiontoIndividualMovingRangeChartImplementingIndividualMovingRangeChart

为什么XbarSChart?-------------------------------------------------------------Lunch------------------------------------------------------------Choosingthesub-groupChoosingthecorrectsamplesizeSamplingfrequencyIntroductiontocontrolchartsforattributedatanpCharts,pCharts,cCharts,uCharts-------------------------------------------------------------Break------------------------------------------------------------Attributecontrolchartexercise(paperclip)OutofcontrolnotnecessarilyisbadDay5wrapupRecapofStatisticalTerminologyDistributionsdiffersinlocationDistributionsdiffersinspreadDistributionsdiffersinshapeNormalDistribution-6-5-4-3-2-10123456------------------------------99.9999998%-------------------------------------------99.73%--------------------95.45%---------68.27%--±3

variationiscallednaturaltoleranceAreaunderaNormalDistribution流程capabilitypotential,CpBasedontheassumptionsthat:流程isnormalNormalDistribution-6-5-4-3-2-10123456LowerSpecLimitLSLUpperSpecLimitUSLSpecificationCenterItisa2-sidedspecification流程meaniscenteredtothedevicespecificationSpreadinspecificationNaturaltoleranceCP=USL-LSL686=1.33流程CapabilityIndex,CpkBasedontheassumptionthatthe流程isnormal和incontrol2.Anindexthatcomparethe流程centerwithspecificationcenterNormalDistribution-6-5-4-3-2-10123456LowerSpecLimitLSLUpperSpecLimitUSLSpecificationCenterThereforewhen,Cpk<Cp;then流程isnotcenteredCpk=Cp;then流程iscenteredUSL-Y3Y-LSL3Cpk=min,The流程ofcollecting,presenting和describingsampledata,usinggraphical工具和numbers.ParetoChartPopulationmeanHistogramPopulation标准偏差DescriptiveStatisticsEstimatesforDescriptiveStatisticsThe流程ofestimatingthepopulationparametersfromsample(s)thatwastakenfromthepopulation.Samplemean,XPopulationmean,mSample标准偏差,SPopulation标准偏差,(whensamplesize,n>20)Estimated标准偏差,R/d2

Population标准偏差,(whensamplesize,n20)ProbabilityTheoryProbabilityisthechanceforaneventtooccur.Statisticaldependence/independencePosteriorprobabilityRelativefrequencyMakedecisionthroughprobabilitydistributions(i.e.Binomial,Poisson,Normal)CentralLimitTheoremRegardlesstheactualdistributionofthepopulation,thedistributionofthemeanforsub-groupsofsamplefromthatdistribution,willbenormallydistributedwithsamplemeanapproximatelyequaltothepopulationmean.Setconfidenceintervalforsamplebasedonnormaldistribution.Abasistocomparesamplesusingnormaldistribution,hencemakingstatisticalcomparisonoftheactualpopulations.Itdoesnotimpliesthatthepopulationisalwaysnormallydistributed.(Cp,Cpkmustalwaysbasedontheassumptionthat流程isnormal)InferentialStatisticsThe流程ofinterpretingthesampledatatodrawconclusionsaboutthepopulationfromwhichthesamplewastaken.ConfidenceInterval(Determineconfidencelevelforasamplingmeantofluctuate)T-Test和F-Test(Determineiftheunderlyingpopulationsissignificantlydifferentintermsofthemeans和variations)Chi-SquareTestofIndependence(Testifthesampleproportionsaresignificantlydifferent)Correlation和Regression(Determineif关系hipbetweenvariablesexists,和generatemodelequationtopredicttheoutcomeofasingleoutputvariable)CentralLimitTheoremThemeanxofthesamplingdistributionwillapproximatelyequaltothepopulationmeanregardlessofthesamplesize.Thelargerthesamplesize,thecloserthesamplemeanistowardsthepopulationmean.2. Thesamplingdistributionofthemeanwillapproachnormalityregardlessoftheactualpopulationdistribution.3. Itassuresusthatthesamplingdistributionofthemeanapproachesnormalasthesamplesizeincreases.m=150Populationdistributionx=150Samplingdistribution(n=5)x=150Samplingdistribution(n=20)x=150Samplingdistribution(n=30)m=150Populationdistributionx=150Samplingdistribution(n=5)某些takeawaysforsamplesize和samplingdistribution

Forlargesamplesize(i.e.n30),thesamplingdistributionofxwillapproachnormalityregardlesstheactualdistributionofthesampledpopulation.Forsmallsamplesize(i.e.n<30),thesamplingdistributionofxisexactlynormalifthesampledpopulationisnormal,和willbeapproximatelynormalifthesampledpopulationisalsoapproximatelynormallydistributed.Thepointestimateofpopulation标准偏差usingSequationmay提供apoorestimationifthesamplesizeissmall.IntroductiontoStudenttDistrbutionDiscoveredin1908byW.S.GossetfromGuinnessBreweryinIreland.Tocompensatefor标准偏差dependenceonsmallsamplesize.Containtworandomquantities(x和S),whereasnormaldistributioncontainsonlyonerandomquantity(xonly)Assamplesizeincreases,thetdistributionwillbecomeclosertothatofstandardnormaldistribution(orzdistribution).PercentilesofthetDistributionWhereby,df=Degreeoffreedom=n(samplesize)––1Shadedarea=one-tailedprobabilityofoccurencea=1––ShadedareaApplicablewhen:Samplesize<30标准偏偏差isunknownPopulationdistributionisatleastapproximatelynormallydistributedt(a,u)aAreaunderthecurvePercentilesoftheNormalDistribution/ZDistributionZaAreaunderthecurveWhereby,Shadedarea=one-tailedprobabilityofoccurencea=1––ShadedareaStudenttDistrbutionexampleFDArequirespharmaceuticalcompaniestoperformextensivetestsonallnewdrugsbeforetheycanbemarketedtothepublic.Thefirstphaseoftestingwillbeonanimals,whilethesecondphasewillbeonhumanonalimitedbasis.PWDisapharmaceuticalcompanycurrentlyinthesecondphaseoftestingonanewantibioticproject.Thechemistsareinterestedtoknowtheeffectofthenewantibioticonthehumanbloodpressure,和theyareonlyallowedtoteston6patients.Theresultoftheincreaseinbloodpressureofthe6testedpatientsareasbelow:(1.7,3.0,0.8,3.4,2.7,2.1)Constructa95%confidenceintervalfortheaverageincreaseinbloodpressureforpatientstakingthenewantibiotic,usingbothnormal和tdistributions.StudenttDistrbutionexample(con’’t)UsingnormalorzdistributionUsingstudenttdistributionAlthoughtheconfidencelevelisthesame,usingtdistributionwillresultinalargerintervalvalue,because:标准偏偏差,Sforsmallsamplesizeisprobablynotaccurate标准偏偏差,SforsmallsamplesizeisprobablytoooptimisticWiderintervalisthereforenecessarytoachievetherequiredconfidencelevelSummaryofformulaforconfidencelimit6Sigma流程和1.5SigmaShiftinMeanStatistically,a流程thatis6Sigmawithrespecttoitsspecificationsis:NormalDistribution-6-5-4-3-2-10123456------------------------------99.9999999998%----------------------------LSLUSLDPM=0.002Cp=2Cpk=2ButMotoroladefines6Sigmawithascenarioof1.5SigmashiftinmeanDPM=3.4Cp=2Cpk=1.51.5某些Explanationson1.5SigmaMeanShiftMotorlahasconductedalotofexperiments,和foundthatinlongterm,the流程meanwillshiftwithin1.5sigmaifthe流程isundercontrol.1.5sigmameanshiftina3Sigma流程controlplanwillbetranslatedtoapproximately14%ofthetimeadatapointwillbeoutofcontrol,和thisisdeemacceptableinstatistical流程control(SPC)practices.NormalDistribution-3-2-10123------------------99.74%-----------------LCLUCLDistributionwith1.5SigmaShift-3-2-10123-----------------86.64%----------------LCLUCLOutofcontroldatapointsOurExplanationMostfrequentlyusedsamplesizeforSPCinindustryis3to5unitspersampling.Takethemiddlevalueof4asanaveragesamplesizeusedinthesampling.Assumingthe流程isof6sigmacapability,isincontrol,和isnormallydistributed.Undertheconfidenceintervalforsamplingdistribution,weexpecttheaveragevalueofthesamplestofluctuatewithin3standarderrors(i.e.naturaltolerance),givingconfidenceintervalof:IntroductiontoHypothesisTesting?Whatishypothesistestinginstatistic?Ahypothesisis““atentativeassumptionmadeinordertodrawoutortestitslogicalorempiricalconsequences.”Astatisticalhypothesisisastatementaboutthevalueofoneofthecharacteristicsforoneormorepopulations.Thepurposeofthehypothesisistoestablishabasis,sothatonecangatherevidencetoeitherdisprovethestatementoracceptitastrue.ExampleofstatisticalhypothesisTheaveragecommutetimeusingHighway92isshorterthanusingFranceAvenue.This流程changewillnotcauseanyeffectonthedownstream流程es.ThevariationofVendorB’spartsare40%widerthanthoseofVendorA.ElementsofHypothesisTestingPossibleoutcomesforhypothesistestingontwotestedpopulations:NoSignificantDifferenceSignificantDifferenceinVariationSignificantDifferenceinMeanSignificantDifferenceinbothMean和Variationm1<>m21=2m1<>m21<>2m1=m21<>2m1=m21=2为什么么HypothesisTesting?Manyproblemsrequireadecisiontoacceptorrejectastatementaboutaparameter.ThatstatementisaHypothesis.Itrepresentsthetranslationofapracticalquestionintoastatisticalquestion.Statisticaltesting提供sanobjectivesolution,withknownrisks,toquestionswhicharetraditionallyansweredsubjectively.Itisasteppingstoneto设计ofExperiment,DOE.HypothesisTestingDescriptionsHypothesisTestinganswersthepracticalquestion:““IstherearealdifferencebetweenA和B?”Inhypothesistesting,relativelysmallsamplesareusedtoanswerquestionsaboutpopulationparameters.Thereisalwaysachancethatasamplethatisnotrepresentativeofthepopulationbeingselected和resultsindrawingawrongconclusion.ElementsofHypothesisTesting(con’t)TheNullHypothesisStatementgenerallyassumedtobetrueunlesssufficientevidenceisfoundtobecontraryOftenassumedtobethestatusquo,orthepreferredoutcome.However,itsometimesrepresentsastateyoustronglywanttodisprove.DesignatedasH0Inhypothesistesting,wealwaysbiastowardnullhypothesisTheAlternativeHypothesis(orResearchHypothesis)Statementthatwillbeacceptedonlyifdata提供convincingevidenceofitstruth(i.e.byrejectingthenullhypothesis).Insteadofcomparingtwopopulations,itcanalsobebasedonaspecificengineeringdifferenceinacharacteristicvaluethatonedesirestodetect(i.e.insteadofaskingism1=m2,weaskism1>450).DesignatedasH1ElementsofHypothesisTesting(con’t)Exampleifwewanttotestwhetherapopulationmeanisequalto500,wewouldtranslateitto:NullHypothesis,H0:mp=500和consideralternatehypothesisas:AlternateHypothesis,H1:mp<>500;(2tailstest)Rememberconfidenceinterval,at95%confidencelevelstatesthat:95%ofthetimethemeanvaluewillfluctuatewithintheconfidenceinterval(limit)5%chancethatthemeanisnaturalfluctuation,butwethinkitisnot–alpha(a)probability---Confidencelimit---mH0=5000.025ofarea0.025ofarea(a/2)rejectarea(a/2)rejectarea1.96stderror1.96stderrorTypeIIErrorAcceptinganullhypothesis(H0),whenitisfalse.ProbabilityofthiserrorequalsbTypeIErrorRejectingthenullhypothesis(H0),whenitistrue.ProbabilityofthiserrorequalsaIfmpiswithinconfidencelimit,acceptthenullhypothesisH0.Ifmpisinrejectarea,rejectthenullhypothesisH0.Usethestderrorobservedfromthesampletosetconfidencelimiton500(mH0).TheassumptionismH0hasthesamevarianceasmp.ElementsofHypothesisTesting(con’t)Otherpossiblealternatehypothesisare:AlternateHypothesis,H1:mp>500;(1tailtest)AlternateHypothesis,H1:mp<500;(1tailtest)1.645stderrorAcceptanceareamH0=5000.05ofarea(a)rejectareaTakingexampleforalternatehypothesis,H1:mp>500For95%confidencelevel,a=0.05.SinceH1isonetailtest,rejectareadoesnotneedtobedividedby2.Fromstandardnormaldistributiontable:Z-valueof1.645willgive0.95area,leavingatobe0.05.Thereforeifmpismorethan500by

1.645stderror,itwillbeintherejectarea,和wewillrejectthenullhypothesisH0,concludingonalternatehypothesisH1thatmpis>500.某些hypothesistestingsthatareapplicabletoengineers:Theimpactonresponsemeasurementwithnew和old流程parameters.Comparisonofanewvendors’’parts(whichareslightlymoreexpensive)tothepresentvendor,whenvariationisamajorissue.IstheyieldonTesterECTZ21thesameastheyieldonTesterECTZ33?流程SituationsComparisonofonepopulationfromasingle流程toadesirablestandardComparisonoftwopopulationsfromtwodifferent流程esorSinglesided:comparisonconsidersadifferenceonlyifitisgreateroronlyifitisless,butnotboth.Twosided:comparisonconsidersanydifferenceofine质量importantInferencesbasedonasinglesample“Largesampletestofhypothesisaboutapopulationmean”Example:Anautomotivemanufacturerwantstoevaluateiftheirnewthrottle设计onallthelatestcarmodelisabletogiveanadequateresponsetime,resultinginanpredictablepick-upofthevehiclespeedwhenthefuelpedalisbeingdepressed.Basedonfiniteelementmodelling,the设计teamcommittedthatthethrottleresponsetimeis1.2msec,和thisistherecommendedvaluethatwillgivethedriverthebestcontroloverthevehicleacceleration.Thetestengineerofthisprojecthastestedon100vehicleswiththenewthrottle设计和obtainanaveragethrottleresponsetimeof1.05msecwitha标准偏差Sof0.5msec.Basedon99%confidencelevel,canheconcludedthatthenewthrottle设计willgiveanaverageresponsetimeof1.2msec?“Largesampletestofhypothesisaboutapopulationmean”(con’t)Solution:Sincethesamplesizeisrelativelylarge(i.e.>30),weshouldusezstatistic.m

X=1.05msec; s

S=0.5msec; n=100;NullhypothesisH0:m

=

mH0(1.2msec)AlternatehypothesisH1:m<>mH0(1.2msec)-----AcceptanceArea-----mH0=1.20.005ofarea0.005ofarea(a/2)RejectArea(a/2)RejectArea2.58stderror2.58stderrorFromstandardnormaldistributiontable,TheZvaluecorrespondingto0.005tailareais2.58.a=0.01(2tails),since2tailstest,thereforetailarea=a/2=0.005;HowmanystderrorisXawayfrom1.2msec?X=1.02ThereforeXis–3stderrorsawayfrom1.2msec.-----AcceptanceArea-----mH0=1.20.005ofarea0.005ofarea(a/2)RejectArea(a/2)RejectArea2.58stderror2.58stderrorX=1.02“Largesampletestofhypothesisaboutapopulationmean”(con’t)Baedon99%confidencelevel,sinceXisatthenegativerejectarea,wewillrejectthenullhypothesis和concludeonthealternatehypothesisthattheaverageresponsetimeissignificantlydifferentthan1.2msecTheaverageresponsetimeappearstobelowerthan1.2msec.Whatdoes99%confidencelevelmeansintheaboveexample?Itdefinesthelimitswhereby99%oftheaveragesamplingvalueshouldfallwithin,giventhedesirable(hypothesised)meanasmH0.AnyvaluefalloutsidethisconfidencelimitindicatesthesamplemeanissignificantlydifferentfrommH0.Inotherwords,wewillonlyconcludethealternatehypothesisH1(thatthemeansaredifferent)ifwearemorethan99%sure.TheObservedSignificancelevel,p-valuep-valueistheprobabilityforconcludingthenullhypothesisH0thatbothpopulationmeansareequalwiththeobservedsampledata.Hence1––pvaluewillbetheconfidencelevelwehaveonthealternatehypothesis.--AcceptanceArea--mH0=1.22.58stderror2.58stderrorX=1.023stderrorP/2AcceptanceAreamH0=1.22.58stderrorX=1.023stderrorPFor2tailstestFor1tailtestP/2-Z+Z3stderror-ZUsingthethrottlequestionasanexample:Weknowthatthemeanresponsetimeis3standarderrorawayfrom1.2msec(mH0),therefore––Z=3.Sincethisisa2tailstest,p-value=P(Z<-3,orZ>3)=2P(Z>3)Fromstandardnormaldistributiontable,P(Z=3)=0.9987P(Z>3)=1––0.9987=0.0013p-value=2P(Z>3)=0.0026Instatisticalterm,itmeansthereisonly0.0026probabilitythattheaveragethrottleresponsetimetobe1.02mseciftheactualpopulationmeanis1.2msecassuggestedbyfiniteelementanalysis.“Smallsampletestofhypothesisaboutapopulationmean”Example:AmyisthePersonnelOfficerofamulti-nationalcompanywhoisinchargeofrecruitingalargenumberofemployeesforanoverseasassignment.Astheseoverseasassignmentsareverycrucialforthecompanysuccessinmeetingtheirbusinessplan,anaptitudetestwasformulatedtotestthe质量量ofallpotentialcandidateshead-huntedbythe招聘聘Agency.Themanagementwantstoknowtheeffectivenessofthe招聘聘Agency,asitwasbelievedthattheaveragetestscoreforalltheidentifiedcandidatesshouldbeequalormorethan90inordertoreducetheriskofassigningthewrongcandidatesforthetask.WhenAmyreviewsthetestsresultofaparticularbatchof20candidates,shefindsthatthemeanscoreis84和the标准准偏偏差差is11.Asthisisaverycritical招聘聘project,Amywantstobemorereservewithheranalysis,和decidedtobemorebiastowardsprovingthatthepopulationmeanislesserthan90.Asaresult,aconfidencelevelof90%willbeusedinheranalysis.“Smallsampletestofhypothesisaboutapopulationmean”(con’’t)Solution:Sincethesamplesizeisrelativelysmall(i.e.<30),weshouldusetstatistic.m

X=84; s

S=11; n=20; a=0.1(1tail)Degreeoffreedom,df=19NullhypothesisH0:m=mH0(90)AlternatehypothesisH1:m<mH0(90)mH0=900.1ofarea(a)RejectArea1.3277stderrorX=84Fromstudent‘‘t’’distributiontable,Thetvaluewith19dfcorrespondingto0.1tailareais=1.3277.HowmanystderrorisXlesserthan90?ThereforeXis–2.439stderrorsawayfrom90和intherejectarea.Amywillrejectthenullhypothesis和concludethattheaveragescoreislessthan90marks.2.439stderrorAcceptanceArea“Largesampletestofhypothesisaboutapopulationproportion”Amethodcurrentlyusedbydoctorstoscreenforpossiblestomachulcerfailstodetecttheulcerin20%ofthepatientswhoactuallyhavethedisease.Supposeanewmethodhasbeendevelopedthatresearchershopewilldetectstomachulcermoreaccurately.Thisnewmethodwasusedtoscreenarandomsampleof140patientsknowntohavestomachulcer.Ofthese,thenewmethodfailedtodetectulcerin12ofthepatients.Using95%confidencelevel,doesthissample提供供evidencethatthefailurerateofthenewmethoddiffersfromtheonecurrentlyinuse?Solution:Lettheprobabilityofsuccessinmisseddetectionasptherefore; H0:p=0.2(i.e.pH0) H1:p<>0.2Samplesize,n=140(i.e.usestandardnormalzastheteststatistic)Computethestandarderrorfornullhypothesis(i.e.whenp=0.2)TestifpH03stderrorwillgivereasonablevalue(i.e.between0to1)pH03stderror0.23(0.034)=(0.166,0.234)“Largesampletestofhypothesisaboutapopulationproportion”(con’’t)Calculatethenumberofstandarderrorsbetweenthesampled和hypothesisedvalue:--AcceptanceArea--pH0=0.20.025ofarea0.025ofarea(a/2)RejectArea(a/2)RejectArea1.96stderror1.96stderrorp=0.0863.36stderrorConclusions:Sincep=0.086isinrejectarea,werejectnullhypothesis和concludethatthenewscreenmethodissignificantlydifferentthantheoldscreenmethodwith95%confidencelevel.With3.36stderrorfrompH0(0.2),thep-valueiscalculatedtobe0.00078,hencethereisa99.922%confidenceinthealternatehypothesis.Itappearsthatthenewscreenmethodwillgivelessermissdetectionforstomachulcer.PowerofaHypothesisTesting95%ConfidenceInterval(AcceptanceArea)mH0

(a/2)RejectArea(a/2)RejectAreaTypeIErrorRejectingthenullhypothesis(H0),whenitistrue.Probabilityofthiserrorequalsa.TypeIIErrorAcceptinganullhypothesis(H0),whenitisfalse.Probabilityofthiserrorequalsb.Inhypothesistesting,wearealwaysbiastowardsH0.Thereforea95%confidencelimitwillonlytellusifwearemorethan95%surethatthetwopopulationmeansaredifferent.Howeverthetruestatesofthepopulationmeanscanbedifferentevenifwearelessthan95%sure.Inotherwords,ifthereisnosignificantdifferencebetweenthe2means,itdoesnotindicatethattheyareequal,itcouldbethattheyarenotfarenoughapart.Illustrateintheabovedistribution,assumingm1hasthesamevarianceasmH0和theyaredifferent,theareaunderm1curvethatisfallwithin95%confidencelimitofmH0willbeb(probabilityfortypeIIerror).m1

ControlbyaControlbybPowerofaHypothesisTesting(con’’t)Assuchthereisatradeoffbetweena和b.Asadecreases,bincreases和viceversa.mH0(a/2)RejectArea(a/2)RejectAream1

75%(a=0.25)95%(a=0.05)ConfidenceIntervalbform1whena=0.05bform1whena=0.25PowerofaHypothesisTesting(con’t)Ahospitaluseslargequantitiesofpackageddosesofaparticulardrug.Theindividualdoseofthisdrugis100cc.Theactionofthedrugissuchthatthebodywillharmlesslypassoffexcessivedoses.Ontheotherhand,insufficientdoses(i.e.99.6cc和below)donotproducethedesiredmedicaleffect,和theyinterferewithpatienttreatment.Thehospitalhaspurchaseditsrequirementsofthisdrugfromthesamemanufacturerforanumberofyears和knowsthatthepopulation标准偏差差is2cc.Thehospitalinspects50dosesofthisdrugatrandomfromaverylargeshippment和findsthemeanofthesedosestobe99.75cc.With90%confidencelevel,howcanthehospitalconcludewetherthedosagesinthisshipmentaretoosmall?mH0=100cc(hypothesisedvalueofpopulationmean)=2(knownpopulation标准偏差)X=99.75(samplemean)n=50(samplesize)H0:m=100(nullhypothesisthatme

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论