![贵州省六盘水二十中学2022年数学八年级第一学期期末检测试题含解析_第1页](http://file4.renrendoc.com/view/c09a6bb347e6fca2b4691fe486a92643/c09a6bb347e6fca2b4691fe486a926431.gif)
![贵州省六盘水二十中学2022年数学八年级第一学期期末检测试题含解析_第2页](http://file4.renrendoc.com/view/c09a6bb347e6fca2b4691fe486a92643/c09a6bb347e6fca2b4691fe486a926432.gif)
![贵州省六盘水二十中学2022年数学八年级第一学期期末检测试题含解析_第3页](http://file4.renrendoc.com/view/c09a6bb347e6fca2b4691fe486a92643/c09a6bb347e6fca2b4691fe486a926433.gif)
![贵州省六盘水二十中学2022年数学八年级第一学期期末检测试题含解析_第4页](http://file4.renrendoc.com/view/c09a6bb347e6fca2b4691fe486a92643/c09a6bb347e6fca2b4691fe486a926434.gif)
![贵州省六盘水二十中学2022年数学八年级第一学期期末检测试题含解析_第5页](http://file4.renrendoc.com/view/c09a6bb347e6fca2b4691fe486a92643/c09a6bb347e6fca2b4691fe486a926435.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知y2+my+1是完全平方式,则m的值是()A.2 B.±2 C.1 D.±12.我国民间,流传着许多含有吉祥意义的图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”“禄”“寿”“喜”,其中是轴对称图形的有几个()A.1个 B.2个 C.3个 D.4个3.如图,在中,,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,则阴影部分的面积为()A.4 B. C. D.84.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90° C.∠BAF=∠CAF D.5.下列计算,正确的是()A. B. C. D.6.用科学记数法表示0.00000085正确的是()A.8.5×107 B.8.5×10-8 C.8.5×10-7 D.0.85×10-87.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1 B.1﹣2x+x2 C.﹣a2+b2﹣2ab D.4x2+4x﹣18.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.9.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为().A. B.C. D.10.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°11.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于()A.120° B.125° C.130° D.135°12.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和39二、填空题(每题4分,共24分)13.若a=-0.22,b=-2-2,c=(-)-2,d=(-)0,将a,b,c,d按从大到小的顺序用“>”连接起来:__________.14.如果式子在实数范围内有意义,那么x的取值范围是____.15.如图,在中,,,将其折叠,使点落在边上处,折痕为,则_______________.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.17.如图,点为线段的中点,,则是_______________三角形.18.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,,,…,都是等腰直角三角形,若OA1=1,则点B2020的坐标是_______.三、解答题(共78分)19.(8分)解方程组:20.(8分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.21.(8分)(1)分解因式(2)分解因式22.(10分)某超市用元购进某种干果销售,由于销售状况良好,超市又调拨元资金购进该种干果,但这次的进价比第一次的进价提高了,购进干果数量是第一次的倍还多千克.该种干果的第一次进价是每千克多少元?如果超市将这种干果全部按每千克元的价格出售,售完这种干果共盈利多少元?23.(10分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,的顶点都在格点上.(1)直接写出点的坐标;(2)试判断是不是直角三角形,并说明理由.24.(10分)平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.25.(12分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.26.如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:(1)当=68和=-4时,的值;(2)当=10时,的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】完全平方公式:a1±1ab+b1的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是y和1的平方,那么中间项为加上或减去y和1的乘积的1倍.【详解】∵(y±1)1=y1±1y+1,∴在y1+my+1中,my=±1y,解得m=±1.故选B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的1倍,就构成了一个完全平方式.注意积的1倍的符号,避免漏解.2、C【分析】根据轴对称图形的概念即可确定答案.【详解】解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,共3个轴对称图形,故答案为C.【点睛】本题考查了轴对称图形的定义,掌握轴对称图形的定义是解答本题的关键.3、A【分析】先根据勾股定理求出AB,然后根据S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB计算即可.【详解】解:根据勾股定理可得AB=∴S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB===4故选A.【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键.4、C【分析】根据三角形的角平分线、中线和高的概念判断.【详解】解:∵AF是△ABC的中线,
∴BF=CF,A说法正确,不符合题意;
∵AD是高,
∴∠ADC=90°,
∴∠C+∠CAD=90°,B说法正确,不符合题意;
∵AE是角平分线,
∴∠BAE=∠CAE,C说法错误,符合题意;
∵BF=CF,
∴S△ABC=2S△ABF,D说法正确,不符合题意;
故选:C.【点睛】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.5、B【解析】解:A.,故A错误;B.,正确;C.,故C错误;D.,故D错误.故选B.6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.00000085用科学记数法表示为8.5×10-1.
故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【详解】A.x2﹣x+1不能用完全平方公式分解,故此选项错误;B.1﹣2x+x2=(1-x)2能用完全平方公式分解,故此选项正确;C.﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D.4x2+4x﹣1不能用完全平方公式分解,故此选项错误.故选:B.【点睛】此题主要考查因式分解,解题的关键是熟知完全平方公式的运用.8、A【分析】根据轴对称图形的定义和图案特点即可解答.【详解】A、是轴对称图形,故选项正确;
B、不是轴对称图形,故本选项错误;
C不是轴对称图形,故选项错误;
D、不是轴对称图形,故本选项错误.
故选A.【点睛】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.9、B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【详解】解:当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2018=504×4+2,
∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).
故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.10、A【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【详解】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.11、B【解析】在△AOC和△BOD中,∴△AOC≌△BOD(SSS),∴∠C=∠D,又∵∠D=30°,∴∠C=30°,又∵在△AOC中,∠A=95°,∴∠AOC=(180-95-30)°=55°,又∵∠AOC+∠AOB=180°(邻补角互补),∴∠AOB=(180-55)°=125°.故选B.12、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.二、填空题(每题4分,共24分)13、c>d>a>b【解析】根据实数的乘方法则分别计算比较大小即可。【详解】∵a=-0.22=-0.04;b=-2-2=-=-=-0.25,c=(-)-2=4,d=(-)0=1,∴c>d>a>b.故本题答案应为:c>d>a>b.【点睛】本题的考点是实数的乘方及实数的大小比较,计算出每一个实数的乘方是解题的关键。14、【分析】根据二次根式由意义的条件是:被开方数大于或等于0,即可求解.【详解】由题意得:,解得:,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.15、【解析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠BA′D=∠DCA'+∠A'DC,又折叠前后图形的形状和大小不变,∠BA'D=∠A=65°,易求∠C=90°-∠A=25°,从而求出∠A′DC的度数.【详解】∵Rt△ABC中,∠ABC=90°,∠A=65°,∴∠C=90°-65°=25°,∵将其折叠,使点A落在边CB上A′处,折痕为BD,则∠BA'D=∠A,∵∠BA'D是△A'CD的外角,∴∠A′DC=∠BA'D-∠C=65°-25°=40°.故答案:40°.【点睛】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.16、3【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.17、等腰【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵∴在Rt△ABM中,C是斜边AB上的中点,∴MC=AB,同理在Rt△ABN中,CN=AB,∴MC=CN∴是等腰三角形,故答案为:等腰.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.18、【分析】根据等腰直角三角形的性质和一次函数上点的特征,依次写出,,,....找出一般性规律即可得出答案.【详解】解:当x=0时,,即,∵是等腰直角三角形,∴,将x=1代入得,∴,同理可得……∴.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.三、解答题(共78分)19、【解析】把①×3+②,消去y,求出x的值,再把求得的x的值代入①求出y的值即可.【详解】由①×3,得.③把③+②,得.解得.把代入①,得..∴原方程组的解是【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.20、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1);(2).【分析】(1)直接提取公因式(x-a)分解因式即可;(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【详解】(1)==(2)=.【点睛】本题考查了因式分解﹣提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.22、(1)该种干果的第一次进价是每千克5元;(2)售完这种干果共盈利6900元.【分析】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元,根据第二次购进干果数量是第一次的倍还多千克列方程求出x的值即可;(2)根据销售总额-进货总额即可得答案.【详解】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元∵第二次购进干果数量是第一次的倍还多千克,∴,解得,经检验是方程的解,答:该种干果的第一次进价是每千克元.(2)=18900-12000(元).答:超市销售这种干果共盈利元.【点睛】本题考查分式方程的应用,根据题意,正确得出等量关系是解题关键.23、(1)A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形,理由见解析.【分析】(1)根据网格中三角形所处位置即可得出坐标;(2)利用勾股定理逆定理进行判定即可.【详解】(1)根据题意,得A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.【点睛】此题主要考查平面直角坐标系中网格三角形坐标的求解以及勾股定理逆定理的运用,熟练掌握,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学六年级口算竞赛试题
- 电商店铺合同(2篇)
- 2024-2025学年高中语文课时作业10烛之武退秦师含解析苏教版必修3
- 2024年高中历史第一单元古代中国的政治制度第3课从汉至元政治制度的演变课后作业含解析新人教版必修1
- 2024年高中化学第三章有机化合物第二节综合训练含解析新人教版必修2
- 2024-2025学年新教材高中历史课时双测过关五三国两晋南北朝的政权更迭与民族交融含解析新人教版必修中外历史纲要上
- 八年级班级工作总结
- 销售人员个人年度工作总结
- 三年级第二学期数学教学计划
- 2022-2023学年第二学期高一中职数学期末考试模拟考试答案解析
- 20世纪西方音乐智慧树知到期末考试答案章节答案2024年北京大学
- 2024年巴西摩托车赛车级轮胎市场机会及渠道调研报告
- 2021-2022学年海南省三亚高一下学期开学考试物理试卷
- 期末模拟试卷 (试题)-2023-2024学年六年级下册数学人教版
- 塑料 聚氨酯生产用聚醚多元醇 碱性物质含量的测定
- 运动技能学习与控制课件第十二章运动技能学习的反馈
- 食材配送售后服务方案
- 胸腔镜下交感神经切断术手术配合
- 英文版中国故事绘本哪吒闹海
- (正式版)JTT 1496-2024 公路隧道施工门禁系统技术要求
- 2024年浙江省温州市中考一模语文试题
评论
0/150
提交评论