广西钦州市钦南区犀牛脚中学2022-2023学年数学九年级第一学期期末达标测试试题含解析_第1页
广西钦州市钦南区犀牛脚中学2022-2023学年数学九年级第一学期期末达标测试试题含解析_第2页
广西钦州市钦南区犀牛脚中学2022-2023学年数学九年级第一学期期末达标测试试题含解析_第3页
广西钦州市钦南区犀牛脚中学2022-2023学年数学九年级第一学期期末达标测试试题含解析_第4页
广西钦州市钦南区犀牛脚中学2022-2023学年数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.92.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是()A.n B.n-1C.4n D.4(n-1)3.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是A. B. C. D.4.下列方程中没有实数根的是()A. B.C. D.5.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=66.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12 B.24 C.36 D.487.已知是方程x2﹣3x+c=0的一个根,则c的值是()A.﹣6 B.6 C. D.28.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A.k>-3 B.k≥-3 C.k≥0 D.k≥19.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个10.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=011.若函数与的图象如图所示,则函数的大致图象为()A. B. C. D.12.若,,为二次函数的图象上的三点,则,,的大小关系是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2二、填空题(每题4分,共24分)13.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.14.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.15.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.16.如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)17.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;18.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.三、解答题(共78分)19.(8分)如图,是等边三角形,顺时针方向旋转后能与重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接,证明:为等边三角形.20.(8分)如图,在平面直角坐标系中,点,过点作轴的垂线,垂足为.作轴的垂线,垂足为点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿方向以每秒个单位长度运动.当点运动到点时,三点随之停止运动.设运动时间为.(1)用含的代数式分别表示点,点的坐标.(2)若与以点,,为顶点的三角形相似,求的值.21.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+622.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.(1)求线段AB的长度:(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.23.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.24.(10分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.25.(12分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.26.如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.(1)求证:为等腰直角三角形;(2)求证:;(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【详解】根据二次函数的定义,可知

m2-7=2

,且

3-m≠0

,解得

m=-3

,所以选择B.故答案为B【点睛】本题考查了二次函数的定义,注意二次项的系数不能为0.2、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:如图示,由分别过点A1、A2、A3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.3、B【分析】利用正多边形的性质求出∠AOE,∠BOF,∠EOF即可解决问题;【详解】由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°−72°−60°=48°,∴∠AOB=360°−108°−48°−120°=84°,故选:B.【点睛】本题考查正多边形的性质、三角形内角和定理,解题关键在于掌握各性质定义.4、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、C【分析】按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.6、B【解析】试题解析:△ABC中,D是AB的中点,DE∥BC,是的中点,∠BEC=90°,△BCE的周长故选B.点睛:三角形的中位线平行于第三边而且等于第三边的一半.7、B【解析】把x=代入方程x2-3x+c=0,求出所得方程的解即可.【详解】把x=代入方程x2-3x+c=0得:3-9+c=0,解得:c=6,故选B.【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c的方程.8、D【解析】根据∆>0且k-1≥0列式求解即可.【详解】由题意得()2-4×1×(-1)>0且k-1≥0,解之得k≥1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.9、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.10、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11、A【分析】首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴>0∴a>0,b<0,

又∵反比例函数的图形位于二、四象限,∴-k<0,∴k>0

∴函数y=kx-b的大致图象经过一、二、三象限.故选:

A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.12、B【解析】试题分析:根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣2,根据x>﹣2时,y随x的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,A(﹣4,y1)关于直线x=﹣2的对称点是(0,y1),∵﹣<0<3,∴y2<y1<y3,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.二、填空题(每题4分,共24分)13、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.14、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.15、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.16、【分析】由题意可知斜面坡度为1:2,BC=6m,由此求得AC=12m,再由勾股定理求得AB的长即可.【详解】由题意可知:斜面坡度为1:2,BC=6m,∴AC=12m,由勾股定理可得,AB=m.故答案为6m.【点睛】本题考查了解直角三角形的应用,根据坡度构造直角三角形是解决问题的关键.17、【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故答案为4.【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.18、-2【解析】试题解析:由韦达定理可得,故答案为三、解答题(共78分)19、(1)B,60;(2)见解析【分析】(1)根据三角形三个顶点中没有变动的点就是旋转中心来判断,再根据旋转的性质判断出旋转的角度即可;(2)先根据旋转的性质得出和即可证明.【详解】解:(1)旋转中心是,旋转角度是度;(2)证明:是等边三角形,,旋转角是;,又,是等边三角形.【点睛】本题主要考察正三角形的判定及性质、图形的旋转性质,熟练掌握性质是关键.20、(1)点的坐标为,点的坐标为;(2)的值为【分析】(1)根据题意OE=3t,OD=t,BF=2t,据四边形OABC是矩形,可得AB=OC=10,BC=OA=12,从而可求得OE、AF,即得E、F的坐标;(2)只需分两种情况(①△ODE∽△AEF②△ODE∽△AFE)来讨论,然后运用相似三角形的性质就可解决.【详解】解:(1)∵BA⊥轴,BC⊥轴,∠AOC=90°,∴∠AOC=∠BAO=∠BCO=90°,∴四边形OABC是矩形,又∵B(12,10),∴AB=CO=10,BC=OA=12根据题意可知OE=3t,OD=t,BF=2t.∴AF=10-2t,AE=12-2t∴点E的坐标为(3t,0),点F的坐标为(12,10-2t)(2)①当△ODE∽△AEF时,则有,∴,解得(舍),;②当△ODE∽△AFE时,则有,∴,解得(舍),;∵点运动到点时,三点随之停止运动,∴,∴,∵,∴舍去,综上所述:的值为故答案为:t=【点睛】本题考查了平面直角坐标系中的动点问题,运用相似三角形的性质来解决问题.易错之处是这两种情况都要考虑到.21、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【点睛】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.22、(1)1;(2);(3)存在,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B两点的坐标,在Rt△AOB中利用勾股定理求出AB即可.(2)证明四边形PEOF是矩形,推出EF=OP,根据垂线段最短解决问题即可.(3)分两种情况进行讨论:①当点P与点B重合时,先求出BM的解析式为y=x+8,设M(x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点P与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.【详解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如图,连接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF是矩形,∴EF=OP,根据垂线段最短可知当OP⊥AB时,OP的值最小,此时OP==,∴EF的最小值为.(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.∵AC=BC=AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点P与点B或点A重合.分两种情况:①当点P与点B重合时,易求BM的解析式为y=x+8,设M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点P与点A重合时,易求AM的解析式为y=x﹣,设M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【点睛】本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.23、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,-1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.24、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;

(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.

②难度较大,运用分类讨论思想,可以分三种情况:

(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.

∵抛物线交x轴于A、B两点,交y轴于点C,

∴A(-6,0),B(2,0),C(0,3),

∴OA=6,OC=3.

当0<t<4时,作DM⊥y轴于M,

则DM=2,OM=4.

∵P(0,t),

∴OP=t,MP=OM-OP=4-t.

∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t

∴W=t(12-2t)=-2(t-3)2+1

∴当t=3时,W有最大值,W最大值=1.

探究二:

存在.分三种情况:

①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,

∴AE=OA-OE=6-2=4=DE.

∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.

∵DM⊥y轴,OA⊥y轴,

∴DM∥OA,

∴∠MDE=∠DEA=90°,

∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.

∴P1M=DM=2,此时又因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论