版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于x的一元二次方程有实数根,则m的取值范围是()A. B.C.且 D.且2.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A. B. C. D.3.函数与的图象如图所示,有以下结论:①b2-4c>1;②b+c=1;③3b+c+6=1;④当1<<3时,<1.其中正确的个数为()A.1个 B.2个 C.3个 D.4个4.两个连续奇数的积为323,求这两个数.若设较小的奇数为,则根据题意列出的方程正确的是()A. B.C. D.5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(
)A.15
B.12
C.9
D.66.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次7.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)8.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)9.如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为()A. B. C. D.10.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A.15 B.13 C.7 D.11.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.512.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE二、填空题(每题4分,共24分)13.烟花厂为春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间是____________.14.已知A(-4,2),B(2,-4)是一次函数的图像和反比例函数图像的两个交点.则关于的方程的解是__________________.15.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.16.若,那么△ABC的形状是___.17.若是方程的一个根.则的值是________.18.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.三、解答题(共78分)19.(8分)先化简,再求值:()÷,其中a是一元二次方程对a2+3a﹣2=0的根.20.(8分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.21.(8分)如图,在等腰直角三角形MNC中,CN=MN=,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.(1)∠NCO的度数为________;(2)求证:△CAM为等边三角形;(3)连接AN,求线段AN的长.22.(10分)如图,直线l的解析式为y=x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为1.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.23.(10分)某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.(1)小亮将妈妈分类好的三类垃圾随机投入到三种垃圾箱内,请用画树状图或表格的方法表示所有可能性,并请求出小亮投放正确的概率.(2)请你就小亮投放垃圾的事件提出两条合理化建议.24.(10分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.25.(12分)已知关于x的一元二次方程x2-3x+m=1.(1)当m为何值时,方程有两个相等的实数根;(2)当时,求方程的正根.26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵关于x的一元二次方程有实数根,∴且△≥0,即,解得,∴m的取值范围是且.故选D.考点:1.根的判别式;2.一元二次方程的定义.2、A【详解】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系,故排除C.故选A.考点:动点问题的函数图象.3、C【分析】利用二次函数与一元二次方程的联系对①进行判断;利用,可对②进行判断;利用,对③进行判断;根据时,可对④进行判断.【详解】解:抛物线与轴没有公共点,△,所以①错误;,,,即,所以②正确;,,,,所以③正确;时,,的解集为,所以④正确.故选:C.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程、二次函数与不等式,掌握二次函数的性质是解题的关键.4、B【分析】根据连续奇数的关系用x表示出另一个奇数,然后根据乘积列方程即可.【详解】解:根据题意:另一个奇数为:x+2∴故选B.【点睛】此题考查的是一元二次方程的应用,掌握数字之间的关系是解决此题的关键.5、A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A6、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.7、B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B.【点睛】本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.8、C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴点C坐标,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴点B坐标,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.9、A【分析】设A的横坐标为a,则纵坐标为,根据题意得出点B的坐标为,代入y=(x<0)即可求得k的值.【详解】解:设A的横坐标为a,则纵坐标为,
∵AC=3BC,∴B的横坐标为-a,
∵AB⊥y轴于点C,∴AB∥x轴,∴B(-a,),
∵点B在函数y=(x<0)的图象上,∴k=-a×=-1,
故选:A.【点睛】本题主要考查了反比例函数图象上点的坐标特征,表示出点B的坐标是解题的关键.10、A【详解】试题分析:由错误的结果求出x的值,代入原式计算即可得到正确结果.解:根据题意得:16+x=17,解得:x=3,则原式=16﹣x=16﹣1=15,故选A考点:解一元一次方程.11、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.12、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;
B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.
C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.
所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.二、填空题(每题4分,共24分)13、4s【分析】将二次函数化为顶点式,顶点横坐标即为所求.【详解】解:∵h==,∴当t=4时,h取得最大值,∴从点火升空到引爆需要的时间为4s.故答案为:4s.【点睛】本题考查二次函数的实际应用问题,判断出所求时间为二次函数的顶点坐标的横坐标是关键.14、x1=-4,x1=1【分析】利用数形结合的思想解决问题即可.【详解】∵A(﹣4,1),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y图象的两个交点,∴关于x的方程kx+b的解是x1=﹣4,x1=1.故答案为:x1=﹣4,x1=1.【点睛】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练掌握基本知识,属于中考常考题型.15、【解析】连接OE、OD′,作OH⊥ED′于H,通过证得AEO≌△HEO(AAS),AE=EH=ED=2,设OB=OE=x.则AO=6﹣x,根据勾股定理得x2=22+(6﹣x)2,解方程即可求得结论.【详解】解:连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为:.【点睛】本题是圆的综合题目,考查了切线的性质和判定、正方形的性质、勾股定理,方程,全等三角形的判定与性质等知识;本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.16、等边三角形【分析】由非负性和特殊角的三角函数值,求出∠A和∠B的度数,然后进行判断,即可得到答案.【详解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形;故答案为:等边三角形.【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到∠A和∠B的度数.17、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,
∴x=2满足该方程,
∴2²-3×2+q=0,
解得,q=2.
故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.18、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题(共78分)19、a1+3a,1【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a1+3a﹣1=0可以得到a1+3a的值,从而可以求得所求式子的值.【详解】解:()÷=[]•a(a﹣1)=()•a(a﹣1)=•a(a﹣1)=a(a+3)=a1+3a,∵a1+3a﹣1=0,∴a1+3a=1,∴原式=1.【点睛】本题考查分式的化简求值,代数式求值.解决此题应注意运算顺序,能熟练掌握通分、因式分解、约分等知识点是解题关键.20、(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或.【分析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;综上所述,满足条件的a的值为-3或.【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.21、(1)15°;(2)证明见解析;(3)【解析】分析:(1)由旋转可得∠ACM=60°,再根据等腰直角三角形MNC中,∠MCN=45°,运用角的和差关系进行计算即可得到∠NCO的度数;(2)根据有一个角是60°的等腰三角形是等边三角形进行证明即可;(3)根据△MNC是等腰直角三角形,△ACM是等边三角形,判定△ACN≌△AMN,再根据Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,即可得到AN=AD﹣ND=﹣1.详解:(1)由旋转可得∠ACM=60°.又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;故答案为15°;(2)∵∠ACM=60°,CM=CA,∴△CAM为等边三角形;(3)连接AN并延长,交CM于D.∵△MNC是等腰直角三角形,△ACM是等边三角形,∴NC=NM=,CM=2,AC=AM=2.在△ACN和△AMN中,∵,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=CM=1,∴Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,∴AN=AD﹣ND=﹣1.点睛:本题主要考查了旋转的性质,等边三角形的判定以及全等三角形的判定与性质的运用,解题时注意:有一个角是60°的等腰三角形是等边三角形.解决问题的关键是作辅助线构造直角三角形.22、(1)27;(2)2【分析】(1)把x=1代入y=x,求得N的坐标,然后根据待定系数法即可求得k的值;(2)根据勾股定理求得A的坐标,然后利用待定系数法求得直线AB的解析式,再和反比例函数的解析式联立,求得M的坐标,然后根据三角形面积公式即可求得△BOM的面积.【详解】解:(1)∵直线l经过N点,点N的横坐标为1,∴y=×1=,∴N(1,),∵点N在反比例函数y=(x>0)的图象上,∴k=1×=27;(2)∵点A在直线l上,∴设A(m,m),∵OA=10,∴m2+(m)2=102,解得m=8,∴A(8,1),∵OA=OB=10,∴B(10,0),设直线AB的解析式为y=ax+b,∴,解得,∴直线AB的解析式为y=﹣3x+30,解得或,∴M(9,3),∴△BOM的面积==2.【点睛】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式和一次函数的解析式,求得、点的坐标是解题的关键.23、(1);(2)详见解析.【分析】(1)将所有情况列在表格中,然后找出小亮投放正确的数量,即可求出概率;(2)写出关于垃圾分类的两条合理化建议即可.【详解】解:(1)列表如下:共有种结果,每种结果出现的可能性相同其中,小亮投放正确的有种:、、;因此,小亮投放正确的概率为:(2)1、充分利用媒体资源,加入普及垃圾分类和可循环利用科学知识的宣传教育;2、在中小学教育中,增加专门的垃圾分类、资源利用和环境保护知识的内容.【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握随机事件概率的求法是解题的关键.24、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;
(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,
∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP=5-2t.当DP=DQ时,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故当t=时,DP=DQ;(1)∵抛物线的对称轴为直线x==-2,
∴设N(-2,n),
又由(2)可知C(-1,0),E(0,-3),设M(m,y),
①当EN为对角线,即四边形ECNM是平行四边形时,如图1,
则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,
∵EN,CM互相平分,
∴=-1,解得m=2,
又M点在抛物线上,
∴y=×22+×2=16,
∴M(2,16);
②当EM为对角线,即四边形ECMN是平行四边形时,如图2,
则线段EM的中点横坐标为,线段CN中点横坐标为,∵EM,CN互相平分,
∴m=-3,解得m=-6,
又∵M点在抛物线上,,∴M(-6,16);
③当CE为对角线,即四边形EMCN是平行四边形时,如图3,
线段CE的中点的横坐标为=-2,线段MN的中点的横坐标为,∵CE与MN互相平分,∴,解得m=-2,
当m=-2时,y=,即M.综上可知,存在满足条件的点M,其坐标为(2,16)或(-6,16)或.【点睛】本题是二次函数的综合题,涉及待定系数法求二次函数解析式、全等三角形的判定和性质、折叠的性质、矩形的性质以及平行四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,第(1)小题注意分类讨论思想的应用.25、(1)m=;(2).【分析】(1)若一元二次方程有两等根,则根的判别式△=b2-4ac=1,建立关于m的方程,求出m的取值.(2)把m的值代入方程,利用求根公式可解出方程,求得方程的正根.【详解】解:(1)∵b2-4ac=9-4m,∴9-4m=1时,方程有两个相等的实数根,解得:m=,即m=时,方程有两个相等的实数根.(2)当m=-时,b2-4ac=9-4m=9+3=12>1,∴由求根公式得:;∵,∴,∴所求的正根为.【点睛】本题主要考查了根的判别式和利用求根公式解一元二次方程.26、(1)证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 凉鞋产业链招商引资的调研报告
- 打字机辊产业链招商引资的调研报告
- 智能家居光伏发电接入方案
- 移动式码头起重机项目运营指导方案
- 须后水市场分析及投资价值研究报告
- 便携式儿童便盆产品供应链分析
- 服装生产供货方案及质量管理措施
- 电子绘图机项目营销计划书
- 房地产装修合同模板范本(2篇)
- 工业用纺织品清洗机产品供应链分析
- 建筑学专业知识考试参考题库(300题)
- API520-安全阀计算PART1(中文版)
- DDI-高绩效辅导培训课件
- 小升初个人简历模板-
- 人教版中职数学教材基础模块上下册教案
- 糕点生产许可证审查细则
- 叉车选型的注意点
- 第一单元 计算机中的编码 课件 初中信息技术七年级上册
- 烧结过程中氮氧化物生成机理及控制
- GB/T 7701.2-2008煤质颗粒活性炭净化水用煤质颗粒活性炭
- GB/T 26832-2011无损检测仪器钢丝绳电磁检测仪技术条件
评论
0/150
提交评论