版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
磁电式传感器原理及应用磁电式传感器原理及应用11磁电感应式传感器
磁电感应式传感器又称电动势式传感器,是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。它是利用导体和磁场发生相对运动而在导体两端输出感应电动势的。它是一种机-电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出阻抗小,又具有一定的频率响应范围(一般为10~1000
Hz),所以得到普遍应用。
磁电感应式传感器是以电磁感应原理为基础的。由法拉第电磁感应定律可知,N匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通变化时,线圈中所产生的感应电动势E(V)的大小取决于穿过线圈的磁通的变化率,即
1磁电感应式传感器磁电感应式传感器又称电动势式传感器2磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等,一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。1.1恒磁通式磁电感应传感器结构与工作原理恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作相对运3磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt成正比的感应电动势E,其大小为式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应强度;l为每匝线圈平均长度。当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正比,根据感应电动势E的大小就可以知道被测速度的大小。由理论推导可得,当振动频率低于传感器的固有频率时,这种传感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的,但一般频响范围为几十赫至几百赫。低的可到10
Hz左右,高的可达2
kHz左右。磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt41.2变磁通式磁电感应传感器结构与工作原理变磁通式磁电感应传感器一般做成转速传感器,产生感应电动势的频率作为输出,而电动势的频率取决于磁通变化的频率。变磁通式转速传感器的结构有开磁路和闭磁路两种。如图所示开磁路变磁通式转速传感器。测量齿轮4安装在被测转轴上与其一起旋转。当齿轮旋转时,齿的凹凸引起磁阻的变化,从而使磁通发生变化,因而在线圈3中感应出交变的电势,其频率等于齿轮的齿数Z和转速n的乘积,即式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电动势频率(Hz)。这样当已知Z,测得f就知道n了。1.2变磁通式磁电感应传感器结构与工作原理变磁通式磁电感5开磁路式转速传感器结构比较简单,但输出信号小,另外当被测轴振动比较大时,传感器输出波形失真较大。在振动强的场合往往采用闭磁路式转速传感器。开磁路式转速传感器结构比较简单,但输出信号小,另外当被测轴振6被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转速n(r/min)成正比,即f=n/30。在这种结构中,也可以用齿轮代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出信号频率f
同前式。变磁通式传感器对环境条件要求不高,能在-150~+90℃的温度下工作,不影响测量精度,也能在油、水雾、灰尘等条件下工作。但它的工作频率下限较高,约为
50
Hz,上限可达100
kHz。被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙平均长72.振动测量工作频率10~500
Hz最大可测加速度5g精度≤10%固有频率12
Hz可测振幅范围0.1~1000
外形尺寸45mm×160
mm灵敏度604
mV·s·cm-1工作线圈内阻1.9质量0.7
kg1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架;5—心轴;6—工作线圈;7—壳体;9—引线1.3磁电感应式传感器的应用1.转速测量2.振动测量工作频率10~500
Hz最大可测加速度5g精83.扭矩测量
当转轴不受扭矩时,两线圈输出信号相同,相位差为零。当被测轴感受扭矩时,轴的两端产生扭转角,因此两个传感器输出的两个感应电动势将因扭矩而有附加相位差。扭转角与感应电动势相位差的关系为
式中:z为传感器定子、转子的齿数。当转轴不受扭矩时,两线圈输出信号相同,相位差为零。当被测92霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1
MHz),耐振动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件,前者输出模拟量,后者输出数字量。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55~+150℃。2霍尔式传感器霍尔式传感器是基于霍尔效应而将被测量转102.1霍尔传感器的工作原理1.霍尔效应
半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势EH,这种现象称为霍尔效应。磁感应强度B为零时的情况ABCD2.1霍尔传感器的工作原理1.霍尔效应半导体薄11
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。霍尔电势EH可用下式表示:
当有图示方向磁场B作用时EH=KHIB作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高12霍尔效应演示
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧偏移,在半导体薄片A、B方向的端面之间建立起霍尔电势。ABCD霍尔效应演示当磁场垂直于薄片时,电子受到洛仑兹力的作用13可以推出,霍尔电动势UH的大小为:
式中:kH为灵敏度系数,kH=RH/d,表示在单位磁感应强度和单位控制电流时的霍尔电动势的大小,与材料的物理特性(霍尔系数)和几何尺寸d有关;霍尔系数RH=1/(nq),由材料物理性质所决定,q为电子电荷量;n为材料中的电子浓度。为磁场和薄片法线夹角。
结论:霍尔电势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电势为同频率的交变电势。
金属材料中的自由电子浓度n很高,因此RH很小,不宜作霍尔元件。霍尔元件多用载流子迁移率大的N型半导体材料制作。另外,霍尔元件越薄(d越小),kH就越大,所以通常霍尔元件都较薄。薄膜霍尔元件的厚度只有1左右。可以推出,霍尔电动势UH的大小为:式中:kH为灵敏度系数,142.霍尔元件霍尔片是一块矩形半导体单晶薄片(一般为4
mm×2
mm×0.1
mm),经研磨抛光,然后用蒸发合金法或其他方法制作欧姆接触电极,最后焊上引线并封装。而薄膜霍尔元件则是在一片极薄的基片上用蒸发或外延的方法做成霍尔片,然后再制作欧姆接触电极,焊上引线最后封装。一般控制端引线采用红色引线,而霍尔输出端引线则采用绿色引线。霍尔元件的壳体用非导磁金属、陶瓷或环氧树脂封装。(a)霍尔元件外形(b)电路符号(c)基本应用电路2.霍尔元件霍尔片是一块矩形半导体单晶薄片(一般为4
mm×153.霍尔元件的主要特性及材料1)霍尔元件的主要特性参数(1)灵敏度kH:表示元件在单位磁感应强度和单位控制电流下所得到的开路霍尔电动势,单位为V/(A·T)。(2)霍尔输入电阻Rin:霍尔控制电极间的电阻值。(3)霍尔输出电阻Rout:霍尔输出电极间的电阻值。(4)霍尔元件的电阻温度系数α:表示在不施加磁场的条件下,环境温度每变化1℃时电阻的相对变化率,单位为%/℃。(5)霍尔寄生直流电势U0:在外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电动势外,还有一直流电势,称为寄生直流电势。(6)霍尔最大允许激励电流Imax:以霍尔元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。3.霍尔元件的主要特性及材料1)霍尔元件的主要特性16
2)霍尔元件的材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)和砷化镓(GaAs)是常见的制作霍尔元件的几种半导体材料。表6-2所列为制作霍尔元件的几种半导体材料主要参数。电阻率电子迁移率
材料(单晶)禁带宽度Eg/(eV)/(Ω·cm)/(cm²/V·s)霍尔系数RH/(cm³·C-1)N型锗(Ge)0.661.0350042504000N型硅(Si)1.1071.5150022501840锑化铟(InSb)0.170.005600003504200砷化铟(InAs)0.360.0035250001001530磷砷铟(InAsP)0.630.08105008503000砷化镓(GaAs)1.470.2850017003800哪种材料制作的霍尔元件灵敏度高?2)霍尔元件的材料电阻率电子迁移率材料(单晶)禁带宽17不等位电动势产生的原因是由于制造工艺不可能保证将两个霍尔电极对称地焊在霍尔片的两侧,致使两电极点不能完全位于同一等位面上。
2.2霍尔元件的误差及补偿
1.霍尔元件的零位误差与补偿霍尔元件的零位误差是指在无外加磁场或无控制电流的情况下,霍尔元件产生输出电压并由此而产生的误差。它主要表现为以下几种具体形式。
1)不等位电动势不等位电动势是零位误差中最主要的一种,它是当霍尔元件在额定控制电流(元件在空气中温升10℃所对应的电流)作用下,不加外磁场时,霍尔输出端之间的空载电动势。不等位电动势产生的原因是由于制造工艺不可能保证将两个霍尔电极18此外,霍尔片电阻率不均匀,或片厚薄不均匀,或控制电流极接触不良都将使等位面歪斜,如图所示,致使两霍尔电极不在同一等位面上而产生不等位电动势。
2)寄生直流电势在无磁场的情况下,元件通入交流电流,输出端除交流不等位电压以外的直流分量称为寄生直流电势。产生寄生直流电势的原因有两个方面:(1)由于控制电极焊接处接触不良而造成一种整流效应,使控制电流因正、反向电流大小不等而具有一定的直流分量。(2)输出电极焊点热容量不相等产生温差电动势。对于锗霍尔元件,当交流控制电流为20
mA时,输出电极的寄生直流电压小于100。此外,霍尔片电阻率不均匀,或片厚薄不均匀,或控制电流极接触不19
3)感应零电动势感应零电动势是在未通电流的情况下,由于脉动或交变磁场的作用,在输出端产生的电动势。根据电磁感应定律,感应电动势的大小与霍尔元件输出电极引线构成的感应面积成正比,如图所示。
4)自激场零电动势霍尔元件控制电流产生自激场,如图所示。由于元件的左右两半场相等,故产生的电动势方向相反而抵消。实际应用时由于控制电流引线也产生磁场,使元件左右两半场强不等,因而有霍尔电动势输出,这一输出电动势即是自激场零电动势。3)感应零电动势4)自激场零电动势20在上述的4种零位误差中,寄生直流电动势、感应零电动势以及自激场零电动势,是由于制作工艺上的原因而造成的误差,可以通过工艺水平的提高加以解决。而不等位电动势所造成的零位误差,则必须通过补偿电路给予克服。在理想情况下R1=R2=R3=R4,即可取得零位电动势为零(或零位电阻为零),从而消除不等位电动势。实际上,若存在零位电动势,则说明此4个电阻不完全相等,即电桥不平衡。为使其达到平衡,可在阻值较大的桥臂上并联可调电阻RP或在两个臂上同时并联电阻RP和R。霍尔元件结构及等效电路如图在上述的4种零位误差中,寄生直流电动势、感应零电动势以及自激21霍尔元件零位误差补偿电路
2.霍尔元件的温度误差及补偿与一般半导体一样,由于电阻率、迁移率以及载流子浓度随温度变化,所以霍尔元件的性能参数如输入、输出、电阻、霍尔常数等也随温度而变化,致使霍尔电动势变化,产生温度误差。霍尔元件零位误差补偿电路2.霍尔元件的温度误差及补偿22将温度每变化1℃时,霍尔元件输入电阻或输出电阻的相对变化率Ri/Ro称为内阻温度系数,用表示。
将温度每变化1℃时,霍尔电压的相对变化率UHt/UH0称为霍尔电压温度系数,用表示。哪种材料制作的霍尔元件温度误差小?将温度每变化1℃时,霍尔元件输入电阻或输出电阻的相对变化率R23几种温度误差的补偿方法1)采用恒压源和输入回路串联电阻补偿基本电路及等效电路如图霍尔电压随温度变化的关系式为:
对上式求温度的导数得,要使温度变化时霍尔电压不变,必须使外接电阻:几种温度误差的补偿方法补偿基本电路及等效电路如图霍尔电压随温242)合理选择负载电阻RL的阻值霍尔元件的输出电阻Ro和霍尔电动势UH都是温度的函数(设为正温度系数),当霍尔元件接有负载RL时,在RL上的电压为:为了负载上的电压不随温度变化,应使dUL/d(t-t0)=0,即式中:Ro0为温度t0时的霍尔元件输出电阻。可采用串、并连电阻的方法使上式成立来补偿温度误差,但霍尔元件的灵敏度将会降低。2)合理选择负载电阻RL的阻值为了负载上的电压不随温253)采用温度补偿元件(如热敏电阻、电阻丝)这是一种常用的温度误差补偿方法。由于热敏电阻具有负温度系数,电阻丝具有正温度系数,可采用输入回路串接热敏电阻,输入回路并接电阻丝,或输出端串接热敏电阻对具有负温度系数的锑化铟材料霍尔元件进行温度补偿。可采用输入端并接热敏电阻方式对输出具有正温度系数的霍尔元件进行温度补偿。一般来说,温度补偿电路、霍尔元件和放大电路应集成在一起制成集成霍尔传感器。2.3霍尔传感器的应用霍尔元件具有结构牢固、工艺成熟、体积小、寿命长、线性度好、频率高、耐振动、不怕灰尘、油污、水汽及盐雾等的污染或腐蚀的优点,目前,霍尔传感器是全球使用量排名第三的传感器产品,它被广泛应用到工业、汽车业、计算机、手机以及新兴消费电子领域中。3)采用温度补偿元件(如热敏电阻、电阻丝)2.3261.霍尔元件基本电路连接方法霍尔元件有无铁心型、铁心型、测试用探针霍尔集成电路等几种类型,有3脚、4脚、5脚元件等几种结构形式,如图是3~5脚(端子)的霍尔元件的基本电路连接方法。。(a)3脚元件(b)4脚元件(c)5脚元件1.霍尔元件基本电路连接方法(a)3脚元件27两种霍尔元件定电压驱动电路两种霍尔元件定电流驱动电路两种霍尔元件定电压驱动电路两种霍尔元件定电流驱动电路28
2.霍尔集成电路在一个晶片中形成有霍尔元件及放大并控制其输出电压的电路,而具有磁场-电气变换机能的固态组件称为霍尔集成电路。霍尔集成电路的构造如图。
依输出信号的性质不同,霍尔集成电路可分为线性型和开关性型两类。线性型霍尔集成电路可以获得与磁场强度成正比的输出电压。磁场灵敏度虽然可利用电路的放大加以调节。较典型的线性型霍尔器件如UGN3501等。2.霍尔集成电路霍尔集成电路的构造如图。依输出信号的29
开关型霍尔集成电路是将霍尔元件、稳压电路、放大器、施密特触发器、OC门(集电极开路输出门)等电路做在同一个芯片上。当外加磁场强度超过规定的工作点时,OC门由高阻态变为导通状态,输出变为低电平;当外加磁场强度低于释放点时,OC门重新变为高阻态,输出高电平。较典型的开关型霍尔器件如UGN3020等。.开关型霍尔集成电路是将霍尔元件、稳压电路、放大器、30开关型霍尔集成电路的外形及内部电路OC门施密特触发电路
双端输入、单端输出运放霍尔元件.Vcc开关型霍尔集成电路的外形及内部电路OC门施密特触发电路31开关型霍尔集成电路(OC门输出)的与继电器的连接开关型霍尔集成电路(OC门输出)的与继电器的连接323.霍尔传感器在汽车中的应用霍尔转速传感器
在被测转速的转轴上安装一个齿盘,也可选取机械系统中的一个齿轮,将线性型霍尔器件及磁路系统靠近齿盘。齿盘的转动使磁路的磁阻随气隙的改变而周期性地变化,霍尔器件输出的微小脉冲信号经隔直、放大、整形后可以确定被测物的转速。SN霍尔器件磁铁3.霍尔传感器在汽车中的应用霍尔转速传感器在被测转33霍尔转速表原理
当齿对准霍尔元件时,磁力线集中穿过霍尔元件,可产生较大的霍尔电动势,放大、整形后输出高电平;反之,当齿轮的空挡对准霍尔元件时,输出为低电平。霍尔转速表原理当齿对准霍尔元件时,磁力线集中穿过霍尔元件34霍尔转速表的其他安装方法
只要黑色金属旋转体的表面存在缺口或突起,就可产生磁场强度的脉动,从而引起霍尔电势的变化,产生转速信号。霍尔元件磁铁霍尔转速表的其他安装方法只要黑色金属旋转体的表面存在缺354.磁场检测磁场测量高斯计4.磁场检测磁场测量高斯计365.电流测量霍尔钳形电流表
测量原理
5.电流测量霍尔钳形电流表测量原理37旋转参数测量(a)径向磁极(b)轴向磁极(c)遮断式旋转参数测量(a)径向磁极(b)轴向磁极(c)遮断387.霍尔机械振动传感器1—霍尔元件;2—平板;3—顶杆;4—触点;5—外壳;6—磁系统7.霍尔机械振动传感器1—霍尔元件;2—平板;3—顶杆;4—39磁电式传感器原理及应用磁电式传感器原理及应用401磁电感应式传感器
磁电感应式传感器又称电动势式传感器,是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。它是利用导体和磁场发生相对运动而在导体两端输出感应电动势的。它是一种机-电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出阻抗小,又具有一定的频率响应范围(一般为10~1000
Hz),所以得到普遍应用。
磁电感应式传感器是以电磁感应原理为基础的。由法拉第电磁感应定律可知,N匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通变化时,线圈中所产生的感应电动势E(V)的大小取决于穿过线圈的磁通的变化率,即
1磁电感应式传感器磁电感应式传感器又称电动势式传感器41磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等,一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。1.1恒磁通式磁电感应传感器结构与工作原理恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作相对运42磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt成正比的感应电动势E,其大小为式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应强度;l为每匝线圈平均长度。当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正比,根据感应电动势E的大小就可以知道被测速度的大小。由理论推导可得,当振动频率低于传感器的固有频率时,这种传感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的,但一般频响范围为几十赫至几百赫。低的可到10
Hz左右,高的可达2
kHz左右。磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt431.2变磁通式磁电感应传感器结构与工作原理变磁通式磁电感应传感器一般做成转速传感器,产生感应电动势的频率作为输出,而电动势的频率取决于磁通变化的频率。变磁通式转速传感器的结构有开磁路和闭磁路两种。如图所示开磁路变磁通式转速传感器。测量齿轮4安装在被测转轴上与其一起旋转。当齿轮旋转时,齿的凹凸引起磁阻的变化,从而使磁通发生变化,因而在线圈3中感应出交变的电势,其频率等于齿轮的齿数Z和转速n的乘积,即式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电动势频率(Hz)。这样当已知Z,测得f就知道n了。1.2变磁通式磁电感应传感器结构与工作原理变磁通式磁电感44开磁路式转速传感器结构比较简单,但输出信号小,另外当被测轴振动比较大时,传感器输出波形失真较大。在振动强的场合往往采用闭磁路式转速传感器。开磁路式转速传感器结构比较简单,但输出信号小,另外当被测轴振45被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转速n(r/min)成正比,即f=n/30。在这种结构中,也可以用齿轮代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出信号频率f
同前式。变磁通式传感器对环境条件要求不高,能在-150~+90℃的温度下工作,不影响测量精度,也能在油、水雾、灰尘等条件下工作。但它的工作频率下限较高,约为
50
Hz,上限可达100
kHz。被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙平均长462.振动测量工作频率10~500
Hz最大可测加速度5g精度≤10%固有频率12
Hz可测振幅范围0.1~1000
外形尺寸45mm×160
mm灵敏度604
mV·s·cm-1工作线圈内阻1.9质量0.7
kg1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架;5—心轴;6—工作线圈;7—壳体;9—引线1.3磁电感应式传感器的应用1.转速测量2.振动测量工作频率10~500
Hz最大可测加速度5g精473.扭矩测量
当转轴不受扭矩时,两线圈输出信号相同,相位差为零。当被测轴感受扭矩时,轴的两端产生扭转角,因此两个传感器输出的两个感应电动势将因扭矩而有附加相位差。扭转角与感应电动势相位差的关系为
式中:z为传感器定子、转子的齿数。当转轴不受扭矩时,两线圈输出信号相同,相位差为零。当被测482霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1
MHz),耐振动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件,前者输出模拟量,后者输出数字量。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55~+150℃。2霍尔式传感器霍尔式传感器是基于霍尔效应而将被测量转492.1霍尔传感器的工作原理1.霍尔效应
半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势EH,这种现象称为霍尔效应。磁感应强度B为零时的情况ABCD2.1霍尔传感器的工作原理1.霍尔效应半导体薄50
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。霍尔电势EH可用下式表示:
当有图示方向磁场B作用时EH=KHIB作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高51霍尔效应演示
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧偏移,在半导体薄片A、B方向的端面之间建立起霍尔电势。ABCD霍尔效应演示当磁场垂直于薄片时,电子受到洛仑兹力的作用52可以推出,霍尔电动势UH的大小为:
式中:kH为灵敏度系数,kH=RH/d,表示在单位磁感应强度和单位控制电流时的霍尔电动势的大小,与材料的物理特性(霍尔系数)和几何尺寸d有关;霍尔系数RH=1/(nq),由材料物理性质所决定,q为电子电荷量;n为材料中的电子浓度。为磁场和薄片法线夹角。
结论:霍尔电势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电势为同频率的交变电势。
金属材料中的自由电子浓度n很高,因此RH很小,不宜作霍尔元件。霍尔元件多用载流子迁移率大的N型半导体材料制作。另外,霍尔元件越薄(d越小),kH就越大,所以通常霍尔元件都较薄。薄膜霍尔元件的厚度只有1左右。可以推出,霍尔电动势UH的大小为:式中:kH为灵敏度系数,532.霍尔元件霍尔片是一块矩形半导体单晶薄片(一般为4
mm×2
mm×0.1
mm),经研磨抛光,然后用蒸发合金法或其他方法制作欧姆接触电极,最后焊上引线并封装。而薄膜霍尔元件则是在一片极薄的基片上用蒸发或外延的方法做成霍尔片,然后再制作欧姆接触电极,焊上引线最后封装。一般控制端引线采用红色引线,而霍尔输出端引线则采用绿色引线。霍尔元件的壳体用非导磁金属、陶瓷或环氧树脂封装。(a)霍尔元件外形(b)电路符号(c)基本应用电路2.霍尔元件霍尔片是一块矩形半导体单晶薄片(一般为4
mm×543.霍尔元件的主要特性及材料1)霍尔元件的主要特性参数(1)灵敏度kH:表示元件在单位磁感应强度和单位控制电流下所得到的开路霍尔电动势,单位为V/(A·T)。(2)霍尔输入电阻Rin:霍尔控制电极间的电阻值。(3)霍尔输出电阻Rout:霍尔输出电极间的电阻值。(4)霍尔元件的电阻温度系数α:表示在不施加磁场的条件下,环境温度每变化1℃时电阻的相对变化率,单位为%/℃。(5)霍尔寄生直流电势U0:在外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电动势外,还有一直流电势,称为寄生直流电势。(6)霍尔最大允许激励电流Imax:以霍尔元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。3.霍尔元件的主要特性及材料1)霍尔元件的主要特性55
2)霍尔元件的材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)和砷化镓(GaAs)是常见的制作霍尔元件的几种半导体材料。表6-2所列为制作霍尔元件的几种半导体材料主要参数。电阻率电子迁移率
材料(单晶)禁带宽度Eg/(eV)/(Ω·cm)/(cm²/V·s)霍尔系数RH/(cm³·C-1)N型锗(Ge)0.661.0350042504000N型硅(Si)1.1071.5150022501840锑化铟(InSb)0.170.005600003504200砷化铟(InAs)0.360.0035250001001530磷砷铟(InAsP)0.630.08105008503000砷化镓(GaAs)1.470.2850017003800哪种材料制作的霍尔元件灵敏度高?2)霍尔元件的材料电阻率电子迁移率材料(单晶)禁带宽56不等位电动势产生的原因是由于制造工艺不可能保证将两个霍尔电极对称地焊在霍尔片的两侧,致使两电极点不能完全位于同一等位面上。
2.2霍尔元件的误差及补偿
1.霍尔元件的零位误差与补偿霍尔元件的零位误差是指在无外加磁场或无控制电流的情况下,霍尔元件产生输出电压并由此而产生的误差。它主要表现为以下几种具体形式。
1)不等位电动势不等位电动势是零位误差中最主要的一种,它是当霍尔元件在额定控制电流(元件在空气中温升10℃所对应的电流)作用下,不加外磁场时,霍尔输出端之间的空载电动势。不等位电动势产生的原因是由于制造工艺不可能保证将两个霍尔电极57此外,霍尔片电阻率不均匀,或片厚薄不均匀,或控制电流极接触不良都将使等位面歪斜,如图所示,致使两霍尔电极不在同一等位面上而产生不等位电动势。
2)寄生直流电势在无磁场的情况下,元件通入交流电流,输出端除交流不等位电压以外的直流分量称为寄生直流电势。产生寄生直流电势的原因有两个方面:(1)由于控制电极焊接处接触不良而造成一种整流效应,使控制电流因正、反向电流大小不等而具有一定的直流分量。(2)输出电极焊点热容量不相等产生温差电动势。对于锗霍尔元件,当交流控制电流为20
mA时,输出电极的寄生直流电压小于100。此外,霍尔片电阻率不均匀,或片厚薄不均匀,或控制电流极接触不58
3)感应零电动势感应零电动势是在未通电流的情况下,由于脉动或交变磁场的作用,在输出端产生的电动势。根据电磁感应定律,感应电动势的大小与霍尔元件输出电极引线构成的感应面积成正比,如图所示。
4)自激场零电动势霍尔元件控制电流产生自激场,如图所示。由于元件的左右两半场相等,故产生的电动势方向相反而抵消。实际应用时由于控制电流引线也产生磁场,使元件左右两半场强不等,因而有霍尔电动势输出,这一输出电动势即是自激场零电动势。3)感应零电动势4)自激场零电动势59在上述的4种零位误差中,寄生直流电动势、感应零电动势以及自激场零电动势,是由于制作工艺上的原因而造成的误差,可以通过工艺水平的提高加以解决。而不等位电动势所造成的零位误差,则必须通过补偿电路给予克服。在理想情况下R1=R2=R3=R4,即可取得零位电动势为零(或零位电阻为零),从而消除不等位电动势。实际上,若存在零位电动势,则说明此4个电阻不完全相等,即电桥不平衡。为使其达到平衡,可在阻值较大的桥臂上并联可调电阻RP或在两个臂上同时并联电阻RP和R。霍尔元件结构及等效电路如图在上述的4种零位误差中,寄生直流电动势、感应零电动势以及自激60霍尔元件零位误差补偿电路
2.霍尔元件的温度误差及补偿与一般半导体一样,由于电阻率、迁移率以及载流子浓度随温度变化,所以霍尔元件的性能参数如输入、输出、电阻、霍尔常数等也随温度而变化,致使霍尔电动势变化,产生温度误差。霍尔元件零位误差补偿电路2.霍尔元件的温度误差及补偿61将温度每变化1℃时,霍尔元件输入电阻或输出电阻的相对变化率Ri/Ro称为内阻温度系数,用表示。
将温度每变化1℃时,霍尔电压的相对变化率UHt/UH0称为霍尔电压温度系数,用表示。哪种材料制作的霍尔元件温度误差小?将温度每变化1℃时,霍尔元件输入电阻或输出电阻的相对变化率R62几种温度误差的补偿方法1)采用恒压源和输入回路串联电阻补偿基本电路及等效电路如图霍尔电压随温度变化的关系式为:
对上式求温度的导数得,要使温度变化时霍尔电压不变,必须使外接电阻:几种温度误差的补偿方法补偿基本电路及等效电路如图霍尔电压随温632)合理选择负载电阻RL的阻值霍尔元件的输出电阻Ro和霍尔电动势UH都是温度的函数(设为正温度系数),当霍尔元件接有负载RL时,在RL上的电压为:为了负载上的电压不随温度变化,应使dUL/d(t-t0)=0,即式中:Ro0为温度t0时的霍尔元件输出电阻。可采用串、并连电阻的方法使上式成立来补偿温度误差,但霍尔元件的灵敏度将会降低。2)合理选择负载电阻RL的阻值为了负载上的电压不随温643)采用温度补偿元件(如热敏电阻、电阻丝)这是一种常用的温度误差补偿方法。由于热敏电阻具有负温度系数,电阻丝具有正温度系数,可采用输入回路串接热敏电阻,输入回路并接电阻丝,或输出端串接热敏电阻对具有负温度系数的锑化铟材料霍尔元件进行温度补偿。可采用输入端并接热敏电阻方式对输出具有正温度系数的霍尔元件进行温度补偿。一般来说,温度补偿电路、霍尔元件和放大电路应集成在一起制成集成霍尔传
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西医科大学晋祠学院《专题信息提取》2023-2024学年第一学期期末试卷
- 山西医科大学《中学思想政治课教学设计》2023-2024学年第一学期期末试卷
- 2024年混凝土结构设计施工合同
- 2024年标准柴油产品居间服务协议模板一
- 2024外墙干挂石材研发、生产与销售合同2篇
- 2024年合作经营足浴中心合同协议2篇
- 2024年标准股权质押担保合同模板一
- 2024年光伏工程协议书2篇
- 幼儿园麻花主题课程设计
- 《制度环境、高管特征与盈余管理》
- 贾平凹《泉》阅读练习及答案(二)
- 盆腔炎中医临床路径住院表单
- 施工现场安全自查自纠表
- 先心病相关性肺动脉高压治疗策略课件
- 2021年内一科临床路径与单病种质量管理年度总结
- 【运营】2020年万达某轻资产项目上线计划模块节点
- 乌兰察布市工业固体废物资源综合利用
- 电气工程预算
- 川教版九年级上册第23课《巴黎公社》
- “青年安全生产示范岗”创建活动方案
- 最新 场地平整施工方案
评论
0/150
提交评论