兹维博迪金融学第二版课件Chapter04_第1页
兹维博迪金融学第二版课件Chapter04_第2页
兹维博迪金融学第二版课件Chapter04_第3页
兹维博迪金融学第二版课件Chapter04_第4页
兹维博迪金融学第二版课件Chapter04_第5页
已阅读5页,还剩151页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Copyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall1Chapter4:

在时间上配置资源ObjectiveExplaintheconceptofcompoundinganddiscountingandtoprovideexamplesofreallifeapplicationsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall2Note:本章ppt并不像其他章按照课本内容初次学习货币时间价值的学生需要2-3倍的基本训练本ppt删去了约170张附加练习,但会将完整版发给大家,供需要的同学使用Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall3Introduction:TimeValueofMoney(TVM)今天的20元比明天的20元更有价值,因为:abankwouldpayinterestonthe$20 inflationmakestomorrows$20lessvaluablethantoday’suncertaintyofreceivingtomorrow’s$20【人的时间偏好】Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall44.1复利CompoundingAssumethattheinterestrateis10%p.a.Whatthismeansisthatifyouinvest$1foroneyear,youhavebeenpromised$1*(1+10/100)or$1.10nextyearInvesting$1foryetanotheryearpromisestoproduce1.10*(1+10/100)or$1.21in2-yearsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall5ValueofInvesting$1Continuinginthismanneryouwillfindthatthefollowingamountswillbeearned:Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall6GeneralizingthemethodGeneralizingthemethodrequiressomedefinitions.Letibetheinterestratenbe一次性(lumpsum)投资持续的期数PVbe现值(thepresentvalue)

FVbe未来值(thefuturevalue)Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall7FutureValueandCompoundInterestCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall8FutureValueofaLumpSumCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall9Example:FutureValueofaLumpSumYourbankoffersaCDwithaninterestrateof3%fora5yearinvestment.Youwishtoinvest$1,500for5years,howmuchwillyourinvestmentbeworth?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall10

RULEOF72

一笔投资在价值上翻倍所需年数为72除以年利率的100倍。DoublingTime= 72

InterestRate*100Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall11PresentValueofaLumpSumCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall12Example:PresentValueofaLumpSumYouhavebeenoffered$40,000foryourprintingbusiness,payablein2years.Giventherisk,yourequireareturnof8%.Whatisthepresentvalueoftheoffer?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall13LumpSumsFormulaeYouhavesolvedapresentvalueandafuturevalueofalumpsum.Thereremainstwoothervariablesthatmaybesolvedforinterest,inumberofperiods,nCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall14SolvingLumpSumCashFlowforInterestRateCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall15Example:InterestRateonaLumpSumInvestmentIfyouinvest$15,000fortenyears,youreceive$30,000.Whatisyourannualreturn?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall16SolvingLumpSumCashFlowforNumberofPeriodsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall174.2TheFrequencyofCompoundingYouhaveacreditcardthatcarriesarateofinterestof18%peryearcompoundedmonthly.Whatistheinterestratecompoundedannually?Thatis,ifyouborrowed$1withthecard,whatwouldyouoweattheendofayear?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall18TheFrequencyofCompoundingWhenarateisexpressedintermsofamacroperiodcompoundedwithadifferentmicroperiod,thenitisanominalorannualpercentagerate(APR)Ifmacroperiod=microperiodthentherateisreferredtoasatherealoreffectiveratebasedonthatperiodCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall19TheFrequencyofCompoundingAssumemmicroperiodsinamacroperiodandanominalratekpermacroperiodcompoundedmicro-periodically.Thatistheeffectiverateisk/mpermicroperiod.Invest$1foronemacroperiodtoobtain$1*(1+k/m)m,producinganeffectiverateoverthemacroperiodof($1*(1+k/m)m-$1)/$1=(1+k/m)m-1Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall20CreditCardIfthecreditcardpaysanAPRof18%peryearcompoundedmonthly.The(real)monthlyrateis18%/12=1.5%sotherealannualrateis(1+0.015)12-1=19.56%ThetwoequalAPRwithdifferentfrequencyofcompoundinghavedifferenteffectiveannualrates:Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall21EffectiveAnnualRatesofanAPRof18%Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall22TheFrequencyofCompoundingNotethatasthefrequencyofcompoundingincreases,sodoestheannualeffectiverateWhatoccursasthefrequencyofcompoundingrisestoinfinity?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall23TheFrequencyofCompoundingTheeffectiveannualratethat’sequivalenttoanannualpercentagerateof18%isthene0.18-1=19.72%Moreprecisionshowsthatmovingfromdailycompoundingtocontinuouscompoundinggains0.53ofonebasispointCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall24TheFrequencyofCompoundingAbankdeterminesthatitneedsaneffectiverateof12%oncarloanstomediumriskborrowersWhatannualpercentageratesmayitoffer?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall25TheFrequencyofCompoundingCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall26TheFrequencyofCompoundingCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall27TheFrequencyofCompoundingManylendersandborrowersdonothaveaclearunderstandingofAPRs,butinstitutionallendersandborrowersdoInstitutionsarethereforeabletoextractafewbasispointsfromconsumers,butwhybother?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall28TheFrequencyofCompoundingFinancialintermediariesprofitfromdifferencesinthelendingandborrowingrates.Overheads(日常管理费用),badloansandcompetitionresultsinanarrowmargin.SmallrategainsthereforeresultinalargeincreasesininstitutionalprofitsInthelongterm,ill-informedconsumerslosebecauseofcompoundingCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall294.5MultipleCashFlowsTimeLinesFutureValueofaStreamofCashFlowPresentValueofaStreamofCashFlowsInvestingwithMultipleCashFlowsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall30TimeLineCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall31PresentValueofMultipleCashFlows

(利率10%)Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall324.6Annuities(年金)Financialanalystsuseseveralannuitieswithdifferingassumptionsaboutthefirstpayment.Wewillexaminejusttwo:regularannuity(普通年金)withitsfirstcoupon(付款)oneperiodfromnow,annuitydue(即期年金)withitsfirstcoupontoday,Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall33CashFlowDiagramofAnnuitiesCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall34年金公式的基本原理asequenceofequallyspacedidenticalcashflowsisacommonoccurrence,soautomationpaysoffatypicalannuityisamortgagewhichmayhave360monthlypayments,alotofworkforusingelementarymethodsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall35AssumptionsRegularAnnuitythefirstcashflowwilloccurexactlyoneperiodformnowallsubsequentcashflowsareseparatedbyexactlyoneperiodallperiodsareofequallengththetermstructureofinterestisflatallcashflowshavethesame(nominal)valueCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall36AnnuityFormulaNotationPV=thepresentvalueoftheannuityi=interestratetobeearnedoverthelifeoftheannuityn=thenumberofpaymentspmt=theperiodicpaymentCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall37DerivationofPVofAnnuityFormula:Algebra.1of5Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall38DerivationofPVofAnnuityFormula:Algebra.2of5Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall39DerivationofPVofAnnuityFormula:Algebra.3of5Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall40DerivationofPVofAnnuityFormula:Algebra.4of5Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall41DerivationofPVofAnnuityFormula:Algebra.5of5Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall42PVofAnnuityFormulaCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall43PVAnnuityFormula:PaymentCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall44PVAnnuityFormula:NumberofPaymentsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall45PVAnnuityFormula:ReturnThereisnotranscendentalsolution(超越解)tothePVofanannuityequationintermsoftheinterestrate【以利息率为未知数的方程】.StudentsinterestedinthereasonwhyarereferredtoGaloisTheory,2nd.EdI.Stewart.Studentswithastrongersenseoffashionare“seen”carryingMichioKuga’spoison-ivy-green-coloredbook“GaloisDream.”Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall46AnnuityFormula:PVAnnuityDueCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall47DerivationofFVofAnnuityFormula:AlgebraCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall48FVAnnuityFormula:PaymentCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall49FVAnnuityFormula:NumberofPaymentsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall50FVAnnuityFormula:ReturnThereisnotranscendentalsolutionNumericalmethodshavetobeemployedCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall514.7PerpetualAnnuities(永续年金)Recalltheannuityformula:Letn->infinitywithi>0:Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall52GrowingAnnuitiesGrowingannuitiessolvethesuper-normalgrowthproblemTheyareoftenmoreappropriateinday-to-daysituationsthanannuitiesCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall534.8LoanAmortization(分期偿还):Mortgageearlyrepaymentpermittedatanytimeduringmortgage’s360monthlypaymentsmarketinterestratesmayfluctuate,buttheloan’srateisaconstant1/2%permonththemortgagerequires10%equityand“threepoints”assumea$500,000housepriceCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall54Mortgage:ThepaymentWewillexaminethisproblemusingafinancialcalculatorThefirstquantitytodetermineistheamountoftheloanandthepointsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall55CalculatorSolutionThisisthemonthlyrepaymentCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall56OutstandingBalance(未偿余额)asaFunctionofTimeThefollowinggraphsillustratethatintheearlyyears,monthlypaymentaremostlyinterest.Inlatteryears,thepaymentsaremostlyprincipleRecallthatonlytheinterestportionistax-deductible,sothetaxshelterdecaysCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall57Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall58Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall594.9ExchangeRatesandTimeValueofMoney

Youareconsideringthechoice:Investing$10,000indollar-denominatedbondsoffering10%/yearInvesting$10,000inyen-denominatedbondsoffering3%/yearAssumeanexchangerateof0.01Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall60$10,000$11,000¥1,000,000¥1,030,000¥Time10%$/$(direct)0.01$/¥3%¥/¥?$/¥U.S.A.JapanCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall61ExchangeRateDiagramReviewofthediagramindicatesthatyouwillendtheyearwitheither$11,000or¥1,030,000Ifthe$priceoftheyenrisesby8%/yearthentheyear-endexchangeratewillbe$0.0108/¥Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall62$10,000$11,124$11,000¥1,000,000¥1,030,000¥Time10%$/$(direct)0.01$/¥3%¥/¥0.0108$/¥U.S.A.JapanCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall63InterpretationandAnotherScenarioInthecaseofthe$priceof¥risingby8%yougain$124onyourinvestmentNow,ifthe$priceof¥risesby6%,theexchangerateinoneyearwillbe$0.0106Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall64$10,000$10,918¥$11,000¥1,000,000¥1,030,000¥Time10%$/$(direct)0.01$/¥3%¥/¥0.0106$/¥U.S.A.JapanCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall65InterpretationInthiscase,youwilllose$82byinvestingintheJapanesebondIfyoudivideproceedsoftheUSinvestmentbythoseoftheJapaneseinvestment,youobtaintheexchangerateatwhichyouareindifferent$11,000/¥1,030,000=0.1068$/¥Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall66$10,000$11,000¥$11,000¥1,000,000¥1,030,000¥Time10%$/$(direct)0.01$/¥3%¥/¥0.01068$/¥U.S.A.JapanCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall67ConclusionIftheyenpriceactuallyrisesbymorethan6.8%duringthecomingyearthentheyenbondisabetterinvestmentCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall68FinancialDecisioninanInternationalContextInternationalcurrencyinvestorsborrowandlendinTheirowncurrencyThecurrencyofcountrieswithwhichtheydobusinessbutwishtohedgeCurrenciesthatappeartoofferabetterdealExchangeratefluctuationscanresultinunexpectedgainsandlossesCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall69ComputingNPVinDifferentCurrenciesInanytime-value-of-moneycalculation,thecashflowsandinterestratesmustbedenominatedinthesamecurrencyUSAprojectUrequiresaninvestmentof$10,000,asdoesaJapaneseprojectJ.Ugenerates$6,000/yearfor5years,andprojectJgenerates¥575,000/yearfor5yearsTheUSinterestis6%,theJapaneseinterestis4%,andthecurrentexchangerateis0.01Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall70SolutionUsingyourfinancialcalculatorDeterminethepresentvalueofUin$bydiscountingthe5paymentsat6%,andsubtracttheinitialinvestmentof$10,000DeterminethepresentvalueofJin¥bydiscountingthe5paymentsat4%,andsubtracttheinitialinvestmentof¥1,000,000Obtain$15,274&¥1,5599,798respectivelyCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall71SolutionConvertthe¥1,5599,798to$usingthecurrentexchangeratetoobtain$15,600TheJapaneseNPVof¥of$15,600ishigherthantheUSANPVor$15,274,soinvestintheJapaneseprojectCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall724.10InflationandDiscountedCashFlowAnalysisWewillusethenotationIntherateofinterestinnominaltermsIrtherateofinterestinrealtermsRtherateofinflationFromchapter2wehavetherelationshipCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall73IllustrationWhatistherealrateofinterestifthenominalrateis8%andinflationis5%?TherealrateorreturndeterminesthespendingpowerofyoursavingsThenominalvalueofyourwealthisonlyasimportantasitspurchasingpowerCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall74InvestinginInflation-protectedCD’sYouhavedecidedtoinvest$10,000forthenext12-months.YouareofferedtwochoicesAnominalCDpayinga8%returnArealCDpaying3%+inflationrateIfyouanticipatetheinflationbeingBelow5%investinthenominalsecurityAbove5%investintherealsecurityEqualto5%investineitherCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall75WhyDebtors(债务人)GainFromUnanticipatedInflation

Youborrow$10,000at8%interest.Thetoday’sspendingpoweroftherepaymentis$10,000*1.08/(1+inflation)Iftheactualinflationistheexpected6%,thentherealcostoftheloanintoday’smoneyis$10,188.68Iftheactualinflationis10%,thentheloan’srealcost(intoday’svalues)is$9,818.18UnexpectedinflationbenefitsborrowerCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall76InflationandPresentValue

一个经常遇到的情况是需要决定为一定时间后的某个目标应每期储蓄多少问题是未来的购买目标的价格在上涨(因通货膨胀)用“实际”(实际价值、实际利率)方法解决此问题Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall77InflationandSavingsPlansAnquestionisHowmuchmustIsaveeachyearinordertoachieveasavingsgoal?Wewillreusetheboatproblem,butwiththeassumptionthattheboateriswillingtowait8-years,butwishestominimizeannual(inflationadjusted)paymentsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall784.11TaxesandInvestmentDecisionsRule:Investsoastomaximizeyourafter-taxrateofreturnThisisnotatallthesamethingas Minimizethetaxyoupay(False)Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall79Chapter4:

在时间上配置资源ObjectiveExplaintheconceptofcompoundinganddiscountingandtoprovideexamplesofreallifeapplicationsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall80Note:本章ppt并不像其他章按照课本内容初次学习货币时间价值的学生需要2-3倍的基本训练本ppt删去了约170张附加练习,但会将完整版发给大家,供需要的同学使用Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall81Introduction:TimeValueofMoney(TVM)今天的20元比明天的20元更有价值,因为:abankwouldpayinterestonthe$20 inflationmakestomorrows$20lessvaluablethantoday’suncertaintyofreceivingtomorrow’s$20【人的时间偏好】Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall824.1复利CompoundingAssumethattheinterestrateis10%p.a.Whatthismeansisthatifyouinvest$1foroneyear,youhavebeenpromised$1*(1+10/100)or$1.10nextyearInvesting$1foryetanotheryearpromisestoproduce1.10*(1+10/100)or$1.21in2-yearsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall83ValueofInvesting$1Continuinginthismanneryouwillfindthatthefollowingamountswillbeearned:Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall84GeneralizingthemethodGeneralizingthemethodrequiressomedefinitions.Letibetheinterestratenbe一次性(lumpsum)投资持续的期数PVbe现值(thepresentvalue)

FVbe未来值(thefuturevalue)Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall85FutureValueandCompoundInterestCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall86FutureValueofaLumpSumCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall87Example:FutureValueofaLumpSumYourbankoffersaCDwithaninterestrateof3%fora5yearinvestment.Youwishtoinvest$1,500for5years,howmuchwillyourinvestmentbeworth?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall88

RULEOF72

一笔投资在价值上翻倍所需年数为72除以年利率的100倍。DoublingTime= 72

InterestRate*100Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall89PresentValueofaLumpSumCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall90Example:PresentValueofaLumpSumYouhavebeenoffered$40,000foryourprintingbusiness,payablein2years.Giventherisk,yourequireareturnof8%.Whatisthepresentvalueoftheoffer?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall91LumpSumsFormulaeYouhavesolvedapresentvalueandafuturevalueofalumpsum.Thereremainstwoothervariablesthatmaybesolvedforinterest,inumberofperiods,nCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall92SolvingLumpSumCashFlowforInterestRateCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall93Example:InterestRateonaLumpSumInvestmentIfyouinvest$15,000fortenyears,youreceive$30,000.Whatisyourannualreturn?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall94SolvingLumpSumCashFlowforNumberofPeriodsCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall954.2TheFrequencyofCompoundingYouhaveacreditcardthatcarriesarateofinterestof18%peryearcompoundedmonthly.Whatistheinterestratecompoundedannually?Thatis,ifyouborrowed$1withthecard,whatwouldyouoweattheendofayear?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall96TheFrequencyofCompoundingWhenarateisexpressedintermsofamacroperiodcompoundedwithadifferentmicroperiod,thenitisanominalorannualpercentagerate(APR)Ifmacroperiod=microperiodthentherateisreferredtoasatherealoreffectiveratebasedonthatperiodCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall97TheFrequencyofCompoundingAssumemmicroperiodsinamacroperiodandanominalratekpermacroperiodcompoundedmicro-periodically.Thatistheeffectiverateisk/mpermicroperiod.Invest$1foronemacroperiodtoobtain$1*(1+k/m)m,producinganeffectiverateoverthemacroperiodof($1*(1+k/m)m-$1)/$1=(1+k/m)m-1Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall98CreditCardIfthecreditcardpaysanAPRof18%peryearcompoundedmonthly.The(real)monthlyrateis18%/12=1.5%sotherealannualrateis(1+0.015)12-1=19.56%ThetwoequalAPRwithdifferentfrequencyofcompoundinghavedifferenteffectiveannualrates:Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall99EffectiveAnnualRatesofanAPRof18%Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall100TheFrequencyofCompoundingNotethatasthefrequencyofcompoundingincreases,sodoestheannualeffectiverateWhatoccursasthefrequencyofcompoundingrisestoinfinity?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall101TheFrequencyofCompoundingTheeffectiveannualratethat’sequivalenttoanannualpercentagerateof18%isthene0.18-1=19.72%Moreprecisionshowsthatmovingfromdailycompoundingtocontinuouscompoundinggains0.53ofonebasispointCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall102TheFrequencyofCompoundingAbankdeterminesthatitneedsaneffectiverateof12%oncarloanstomediumriskborrowersWhatannualpercentageratesmayitoffer?Copyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall103TheFrequencyofCompoundingCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall104TheFrequencyofCompoundingCopyright©2009PearsonEducaCopyright©2009PearsonEducation,Inc.

PublishingasPrenticeHall105TheFrequencyofCompoundingManylendersandborrowersdonothaveaclearunderstandingofAPRs,butinstitutionallendersandborrowersdoInstitutionsarethereforeabletoextractafewbasispoints

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论