安徽省淮北市五校联考2022-2023学年数学八上期末质量检测试题含解析_第1页
安徽省淮北市五校联考2022-2023学年数学八上期末质量检测试题含解析_第2页
安徽省淮北市五校联考2022-2023学年数学八上期末质量检测试题含解析_第3页
安徽省淮北市五校联考2022-2023学年数学八上期末质量检测试题含解析_第4页
安徽省淮北市五校联考2022-2023学年数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,A、C是函数的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D.记的面积为,的面积为,则和的大小关系是()A. B.C. D.由A、C两点的位置确定2.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=-2x-24(0<x<12) D.y=-x-12(0<x<24)3.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或94.由方程组可得出与之间的关系是()A. B.C. D.5.不等式2x-1≤5的解集在数轴上表示为()A. B. C. D.6.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁7.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.8.如图,AD是△ABC的中线,点E、F分别是射线AD上的两点,且DE=DF,则下列结论不正确的是()A.△BDF≌△CDE B.△ABD和△ACD面积相等C.BF∥CE D.AE=BF9.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5C.(﹣2a2)4=16x6 D.a6÷a2=a310.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:5二、填空题(每小题3分,共24分)11.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.12.如果正多边形的一个外角为45°,那么它的边数是_________.13.正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____.14.如图,,则_________________.15.观察下列各式:;;;;⋯⋯⋯,则______16.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以DC,BC,AB为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=64,S1=9,则S1的值为_____.17.当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.18.若分式的值为0,则实数的值为_________.三、解答题(共66分)19.(10分)如图,以的边和为边向外作等边和等边,连接、.求证:.20.(6分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.21.(6分)某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以下信息解答问题:(1)此次共调查了多少人?(2)求“年龄岁”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.22.(8分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.23.(8分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.24.(8分)解不等式组,并求出不等式组的整数解之和.25.(10分)如图,正方形的对角线交于点点,分别在,上()且,,的延长线交于点,,的延长线交于点,连接.(1)求证:.(2)若正方形的边长为4,为的中点,求的长.26.(10分)列二元一次方程组解决问题:某校八年级师生共人准备参加社会实践活动,现已预备了两种型号的客车共辆,每辆种型号客车坐师生人,每辆种型号客车坐师生人,辆客车刚好坐满,求两种型号客车各多少辆?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=k|.【详解】由题意得:S1=S2=|k|=.故选:C.【点睛】本题主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;这里体现了数形结合的思想.2、B【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围.【详解】解:由题意得:2y+x=24,

故可得:y=x+12(0<x<24).

故选:B.【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.3、D【解析】试题分析:设内角和为1010°的多边形的边数是n,则(n﹣2)•110°=1010°,解得:n=1.则原多边形的边数为7或1或2.故选D.考点:多边形内角与外角.4、B【分析】根据题意由方程组消去m即可得到y与x的关系式,进行判断即可.【详解】解,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.5、A【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解:解不等式得:x≤3,所以在数轴上表示为:故选:A.【点睛】不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.6、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.

故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.8、D【解析】利用SAS判定△BDF≌△CDE,即可一一判断;【详解】解:∵AD是△ABC的中线,

∴BD=CD,

∴S△ABD=S△ADC,故B正确,

在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故A正确;

∴CE=BF,

∵△BDF≌△CDE(SAS),

∴∠F=∠DEC,

∴FB∥CE,故C正确;

故选D.【点睛】此题主要考查了全等三角形判定和性质,解题的关键是正确寻找全等三角形解决问题.9、B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.10、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;

B、∵52+122=132,

∴此三角形是直角三角形,故本选项不符合题意;

C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C

∴∠A=90°,

∴此三角形是直角三角形,故本选项不符合题意;

D、设∠A=3x,则∠B=4x,∠C=5x,

∵∠A+∠B+∠C=180°,

∴3x+4x+5x=180°,解得x=15°

∴∠C=5×15°=75°,

∴此三角形不是直角三角形,故本选项符号要求;

故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.二、填空题(每小题3分,共24分)11、1或2【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=11-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=11﹣2t=2,解得t=2.所以,当t的值为1或2秒时.△ABP和△DCE全等.故答案为:1或2.【点睛】本题考查了全等三角形的判定,要注意分类讨论.12、8【详解】正多边形的一个外角为45°,那么它的边数是故答案为13、或【分析】分两种情况进行分析,①当BF如图位置时,②当BF为BG位置时;根据相似三角形的性质即可求得BM的长.【详解】如图,当BF如图位置时,∵AB=AB,∠BAF=∠ABE=90°,AE=BF,

∴△ABE≌△BAF(HL),

∴∠ABM=∠BAM,

∴AM=BM,AF=BE=3,

∵AB=4,BE=3,

∴AE=,

过点M作MS⊥AB,由等腰三角形的性质知,点S是AB的中点,BS=2,SM是△ABE的中位线,

∴BM=AE=×5=,

当BF为BG位置时,易得Rt△BCG≌Rt△ABE,

∴BG=AE=5,∠AEB=∠BGC,

∴△BHE∽△BCG,

∴BH:BC=BE:BG,

∴BH=.故答案是:或.【点睛】利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.14、【分析】根据等腰三角形三线合一性质求得∠CAD与∠ADC的度数,再根据AD=AE,利用三角形内角和定理可求得∠ADE的度数,从而不难求解.【详解】∵AB=AC,BD=CD,

∴AD平分∠BAC,AD⊥BC,

∴∠CAD=∠BAD=30°,∠ADC=90°.

∵AD=AE,

∴∠ADE=∠AED===75°,

∴∠CDE=∠ADC-∠ADE=90°-75°=15°.

∴故答案为:.【点睛】本题主要考查了等腰三角形的判定与性质,三角形内角和等知识点,熟练掌握等腰三角形的判定与性质是解题的关键.15、【分析】根据题意,总结式子的变化规律,然后得到,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案.【详解】解:∵;;;;……∴;∴;故答案为:.【点睛】本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.16、2【分析】由已知可以得到+,代入各字母值计算可以得到解答.【详解】解:如图,过A作AE∥DC交BC于E点,

则由题意可知∠ABC+∠AEB=90°,且BE=AD=BC,AE=DC,∴三角形ABE是直角三角形,∴,即,∴,故答案为2.【点睛】本题考查平行四边形、正方形面积与勾股定理的综合应用,由已知得到三个正方形面积的关系式是解题关键.17、3【分析】先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.【详解】因为当时,分式无意义,所以,解得:,因为当时,分式的值为零,所以,解得:,所以故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.18、【分析】根据分式值为0的条件①分母不为0,②分子等于0计算即可.【详解】解:由题意得且由解得;由解得或1(舍去)所以实数的值为.故答案为:.【点睛】本题考查了分式值为零的条件,熟练掌握分式值为0时满足得条件是解题的关键,易错点在于容易忽视分式的分母不为0.三、解答题(共66分)19、见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB≌△CAD,则BE=CD.【详解】证明:∵△ACE和△ABD都是等边三角形∴AC=AE,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD.∴△EAB≌△CAD(SAS)∴【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件.20、(1);(2)-1;(3)2【分析】(1)先求出点P为(1,2),再把P点代入解析式即可解答.(2)把P(1,2)代入y=ax+3,即可解答.(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.【详解】(1)把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为;(2)把P(1,2)代入y=ax+3,得2=a+3,解得a=﹣1.故答案为﹣1;(3)∵函数y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),∴这两个交点之间的距离为3﹣(﹣1)=2,∵P(1,2),∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.【点睛】此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.21、(1)50人;(2)72°;(3)详见解析【分析】(1)根据15岁在扇形中所占的百分比及人数即可求出总人数;(2)先求出年龄13岁人数所占比例,再乘以360°即可计算;(3)根据总人数计算出年龄14岁和年龄16岁的人数,再补全即可.【详解】解:(1),∴此次共调查了50人.(2),∴“年龄岁”在扇形统计图中所占圆心角的度数为:72°.(3)年龄14岁的人数为:(人)年龄16岁的人数为:50-6-10-14-18=2(人)条形图如下:【点睛】本题考查了条形统计图与扇形统计图,解题的关键是理解条形统计图与扇形统计图之间的联系.22、∠EAD=10°.【分析】由三角形的内角和定理求得∠BAC=60°,由角平分线的等于求得∠BAE=30°,由直角三角形的两锐角互余求得∠BAD=40°,根据∠EAD=∠BAE﹣∠BAD即可求得∠EAD的度数.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AE是角平分线,∴∠BAE=∠BAC=×60°=30°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.【点睛】本题考查了三角形的内角和定理、三角形的角平分线及高线,熟知三角形的内角和为180°是解决问题的关键.23、见解析【分析】先根据AAS证明△AOC≌△BOD,得到AC=BD,再根据SAS证明△AEC≌△BFD,可证明CE=DF.【详解】证明:∵AC∥DB∴∠A=∠B在△AOC和△BOD中∵∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中∵∴△AEC≌△BFD(SAS)∴CE=DF【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论