版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.下列说法正确的是()A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形3.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=4.已知关于x的二次方程有两个实数根,则k的取值范围是()A. B.且 C. D.且5.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70° B.80° C.84° D.86°6.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线()A. B. C. D.7.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.168.如图,四点在⊙上,.则的度数为()A. B. C. D.9.下列由几何图形组合的图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:①②当时四边形是正方形③四边形的面积和周长都是定值④连接,,则,其中正确的有()A.①② B.①②③ C.①②④ D.①②③④11.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)12.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr2二、填空题(每题4分,共24分)13.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___个.15.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)16.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.17.如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.18.二次函数y=2(x﹣1)2+3的图象的顶点坐标是_________三、解答题(共78分)19.(8分)如图,等腰Rt△BPQ的顶点P在正方形ABCD的对角线AC上(P与AC不重合),∠PBQ=90°,QP与BC交于E,QP延长线交AD于F,连CQ.(1)①求证:AP=CQ;②求证:(2)当时,求的值.20.(8分)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.(1)=,=;(2)根据函数图象可知,当>时,x的取值范围是;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.21.(8分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.22.(10分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由23.(10分)在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字.(1)从中随机摸出一个球,求这个球上数字是奇数的概率是;(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)24.(10分)某市计划建设一项水利工程,工程需要运送的土石方总量为米3,某运输公司承办了这项工程运送土石方的任务.(1)完成运送任务所需的时间(单位:天)与运输公司平均每天的工作量(单位:米3/天)之间具有怎样的函数关系?(2)已知这个运输公司现有50辆卡车,每天最多可运送土石方米3,则该公司完成全部运输任务最快需要多长时间?(3)运输公司连续工作30天后,天气预报说两周后会有大暴雨,公司决定10日内把剩余的土石方运完,平均每天至少增加多少辆卡车?25.(12分)在平面直角坐标系中,已知抛物线y=x2+kx+c的图象经过点C(0,1),当x=2时,函数有最小值.(1)求抛物线的解析式;(2)直线l⊥y轴,垂足坐标为(0,﹣1),抛物线的对称轴与直线l交于点A.在x轴上有一点B,且AB=,试在直线l上求异于点A的一点Q,使点Q在△ABC的外接圆上;(3)点P(a,b)为抛物线上一动点,点M为坐标系中一定点,若点P到直线l的距离始终等于线段PM的长,求定点M的坐标.26.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
参考答案一、选择题(每题4分,共48分)1、A【解析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.2、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.3、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.4、B【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:且,解得:且,故选:B.【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.5、B【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.6、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x.故选:B.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.7、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【详解】解:如图,连接BO,则∵,∴,∴,∵,∴;故选:B.【点睛】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.9、A【分析】根据轴对称图形和中心对称图形的定义逐项判断即得答案.【详解】解:A、既是轴对称图形又是中心对称图形,故本选项符合题意;B、是轴对称图形,但不是中心对称图形,故本选项不符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是中心对称图形,但不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于应知应会题型,熟知二者的概念是解题关键.10、A【分析】过P作PM⊥y轴于M,PN⊥x轴于N,易得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证得△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【详解】过P作PM⊥y轴于M,PN⊥x轴于N,
∵P(1,1),
∴PN=PM=1.
∵x轴⊥y轴,
∴∠MON=∠PNO=∠PMO=90°,则四边形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPN=∠APB=90°,
∴∠MPA=∠NPB.
在△MPA≌△NPB中,,
∴△MPA≌△NPB,
∴PA=PB,故①正确.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
当OA=OB,即OA=OB=1时,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
∵△MPA≌△NPB,
∴.
∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
∵∠AOB+∠APB=180°,
∴点A、O、B、P共圆,且AB为直径,所以AB≥OP,故④错误.
故选:A.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,圆周角定理,关键是推出AM=BN和推出OA+OB=OM+ON11、C【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.12、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.二、填空题(每题4分,共24分)13、y=3(x﹣1)2﹣2【分析】根据图象向下平移减,向右平移减,即可得答案.【详解】抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故答案为y=3(x-1)2-2.【点睛】本题考查了二次函数图象与几何变换,解题的关键是用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14、1【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中黄色球可能有x个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=,解得:x=1.∴袋中黄色球可能有1个.故答案为:115、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.17、2【解析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值.【详解】解:∵抛物线与轴交于点,∴,抛物线的对称轴为∴顶点坐标为,点坐标为∵点为线段的中点,∴点坐标为设直线解析式为(为常数,且)将点代入得∴将点代入得解得故答案为:2【点睛】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.18、(1,3)【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+)2+,知顶点坐标是(-,),把已知代入就可求出顶点坐标.【详解】解:y=ax2+bx+c,配方得y=a(x+)2+,顶点坐标是(-,),∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是(1,3).【点睛】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(-,),和转化形式y=a(x+)2+,代入即可.三、解答题(共78分)19、(1)①证明见解析;②证明见解析;(2)【分析】(1)①证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
②根据正方形的性质和全等三角形的性质得到∠DAC=∠BAC,∠APF=∠ABP,即可证得△APF∽△ABP,再根据相似三角形的性质即可求解;(2)设正方形边长为,根据已知条件可求得PA的长,再根据第(1)②的结论可求得AF的长,从而求得答案.【详解】证明:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△PBQ为等腰直角三角形,∴∠PBQ=90°,PB=BQ,∵∠ABP+∠BPC=∠BPC+∠CBQ=,∴∠ABP=∠CBQ,在△ABP与△CBQ中,,∴△ABP≌△CBQ,∴AP=CQ;②如图,∵∠CPB=∠3+∠4=∠1+∠2,∵∠4=∠1=45°,∴∠3=∠2,∴∠5=∠2,∵∠6=∠1=45°,∴△PFA∽△BPA,∴,∴即;(2)设正方形边长为,则,∵,∴,∴PA=,∵,∴,解得:AF=,∴DF=,∴.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;灵活运用相似三角形的判定与性质是解题的关键.20、(1),16;(2)-8<x<0或x>4;(3)点P的坐标为().【分析】(1)将点B代入y1=k1x+2和y2=,可求出k1=k2=16.(2)由图象知,-8<x<0和x>4(3)先求出四边形ODAC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.【详解】解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=∴一次函数解析式为y1=x+2;把B(-8,-2)代入得k2=-8×(-2)=16,
∴反比例函数解析式为故答案为:,16;(2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,
∴-8<x<0或x>4;
故答案为:-8<x<0或x>4;(3)由(1)知y1=x+2,y2=,∴m=4,点C的坐标是(0,2),点A的坐标是(4,4),∴CO=2,AD=OD=4,∴S梯形ODAC=·OD=×4=12.∵S梯形ODAC∶S△ODE=3∶1,∴S△ODE=×S梯形ODAC=×12=4,即OD·DE=4,∴DE=2,∴点E的坐标为(4,2).又∵点E在直线OP上,∴直线OP的解析式是y=x,∴直线OP与反比例函数y2=的图象在第一象限内的交点P的坐标为(4,2).【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数与一次函数的解析式,三角形、梯形的面积,根据图象找出自变量的取值范围.在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.21、(1)35;(2)190;(3)所有可能的情况见解析,.【分析】(1)考查了扇形图的性质,根据所有小扇形的百分数和为即可得;(2)根据扇形图求出最喜欢球运动的学生人数对应的百分比,从而即可得;(3)先列出所有可能的结果,再找出2人均为最喜欢篮球运动的学生的结果,最后利用概率公式求解即可.【详解】(1)由题得:解得:故答案为:35;(2)最喜欢球运动的学生人数为(人)故答案为:190;(3)用表示3名最喜欢篮球运动的学生,B表示1名最喜欢乒乓球运动的学生,C表示1名喜欢足球运动的学生,则从5人中选出2人的所有可能的情况10种,即有,它们每一种出现的可能性相等选出的2人均是最喜欢篮球运动的学生的情况有3种,即则选出2人均是最喜欢篮球运动的学生的概率为.【点睛】本题考查了扇形统计图的概念及性质、利用列举法求概率,较难的是(3),依据题意,正确列出事件的所有可能的结果是解题关键.22、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率.23、(1);(2)见解析,【分析】(1)直接根据概率公式解答即可;(2)首先根据题意列出表格,然后列表法求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)从3个球中随机摸出一个,摸到标有数字是奇数的球的概率是;(2)列表如下:第1次第2次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)根据表格可知共有9中情况,其中两次都是奇数的是4种,则概率是=.【点睛】本题考查了概率,根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.24、(1);(2)该公司完成全部运输任务最快需要50天;(3)每天至少增加50辆卡车.【分析】(1)根据“平均每天的工作量×工作时间=工作总量”即可得出结论;(2)根据“工作总量÷平均每天的工作量=工作时间”即可得出结论;(3)先求出30天后剩余的工作量,然后利用剩余10天每天的工作量÷每辆汽车每天的工作量即可求出需要多少辆汽车,从而求出结论.【详解】解:(1)由题意得:,变形,得;(2)当时,,答:该公司完成全部运输任务最快需要50天.(3)辆,辆答:每天至少增加50辆卡车.【点睛】此题考查的是反比例函数的应用,掌握实际问题中的等量关系是解决此题的关键.25、(1)y=x2﹣x+1;(2)Q(1,﹣1);(3)M(2,1)【分析】(1)由已知可求抛物线解析式为y=x2﹣x+1;(2)由题意可知A(2,﹣1),设B(t,0),由AB=,所以(t﹣2)2+1=2,求出B(1,0)或B(3,0),当B(1,0)时,A、B、C三点共线,舍去,所以B(3,0),可证明△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(,),半径为,设Q(x,﹣1),则有(x﹣)2+(+1)2=()2,即可求Q(1,﹣1);(3)设顶点M(m,n),P(a,b)为抛物线上一动点,则有b=a2﹣a+1,因为P到直线l的距离等于PM,所以(m﹣a)2+(n﹣b)2=(b+1)2,可得+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,由a为任意值上述等式均成立,有,可求定点M的坐标.【详解】解:(1)∵图象经过点C(0,1),∴c=1,∵当x=2时,函数有最小值,即对称轴为直线x=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江大学《建设工程招投标与合同管理》2022-2023学年第一学期期末试卷
- 2024年度某工程项目综合服务协议版
- 黑龙江大学《河流动力学》2021-2022学年第一学期期末试卷
- 黑龙江大学《公共政策学》2022-2023学年第一学期期末试卷
- 2024年度物业管理装修协议条款样本版
- 2024年施工建设业务协议格式范本版
- 劳动教育教室建设方案
- 2024年工艺品销售协议版
- 2024年企业专属安保人员聘请协议版
- 2024年房屋建筑施工协议范本下载版
- 专业技术人员考核办法及细则
- 预应力锚索张拉试验方案
- 公安局市人大代表履职情况报告
- 重大危险源包保责任制管理制度
- 二衬施工现场检查记录表
- 架空绝缘配电线路设计技术规程DLT6011996
- 注塑模具基本介绍PPT课件
- 课题结题成果鉴定书.doc
- 医院输血科技术人员绩效考核指标
- 带轴间差速器地分动器特性分析报告材料
- 急诊科护理质量控制措施
评论
0/150
提交评论