2022-2023学年江苏省江阴市澄西中学数学九年级第一学期期末教学质量检测试题含解析_第1页
2022-2023学年江苏省江阴市澄西中学数学九年级第一学期期末教学质量检测试题含解析_第2页
2022-2023学年江苏省江阴市澄西中学数学九年级第一学期期末教学质量检测试题含解析_第3页
2022-2023学年江苏省江阴市澄西中学数学九年级第一学期期末教学质量检测试题含解析_第4页
2022-2023学年江苏省江阴市澄西中学数学九年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要使二次根式有意义,则的取值范围是()A. B.且 C. D.且2.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.<< B.<< C.<< D.<<3.如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明△ABC~△EDC的是()A.∠A=∠E B. C.AB∥DE D.4.抛物线与坐标轴的交点个数为()A.0 B.1 C.2 D.35.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能确定6.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是()A.4 B.5 C.6 D.77.如图,在中,平分于.如果,那么等于()A. B. C. D.8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A. B. C. D.9.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.10.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是()A.k<1且k≠0 B.k≤1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0二、填空题(每小题3分,共24分)11.△ABC中,∠C=90°,tanA=,则sinA+cosA=_____.12.如图,在与中,,要使与相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)13.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.14.如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限.点在轴正半轴上,连结交反比例函数图象于点.为的平分线,过点作的垂线,垂足为,连结.若是线段中点,的面积为4,则的值为______.15.一个圆锥的底面圆的半径为3,母线长为9,则该圆锥的侧面积为__________.16.在1:5000的地图上,某两地间的距离是,那么这两地的实际距离为______________千米.17.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.18.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1.(1)求抛物线顶点C的坐标(用含m的代数式表示);(2)已知点A(0,3),B(2,3),若该抛物线与线段AB有公共点,结合函数图象,求出m的取值范围.21.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.22.(8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)23.(8分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?24.(8分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是,BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)25.(10分)(1)解方程.(2)计算:.26.(10分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据二次根式有意义:被开方数为非负数,分式有意义:分母不为零,可得出x的取值.【详解】解:要使二次根式有意义,则,且,故的取值范围是:且.故选:D.【点睛】此题考查了二次根式及分式有意义的条件,属于基础题,解答本题的关键是掌握:二次根式有意义:被开方数为非负数,分式有意义:分母不为零,难度一般.2、D【分析】先根据反比例函数中k>1判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数y=中k>1,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<1,∴点C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故选:D.【点睛】本题考查的是反比例函数的性质,掌握反比例函数图象所在象限及增减性是解答此题的关键.3、D【分析】利用相似三角形的判定依次判断即可求解.【详解】A、若∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项A不符合题意;B、若,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项B不符合题意;C、若AB∥DE,可得∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项C不符合题意;D、若,且∠ACB=∠DCE,则不能证明△ABC~△EDC,故选项D符合题意;故选:D.【点睛】本题考查相似三角形的判定,熟知相似三角形的判定方法是解题的关键,判定时需注意找对对应线段.4、C【分析】先计算自变量为0对应的函数值得到抛物线与轴的交点坐标,再解方程得抛物线与轴的交点坐标,从而可对各选项进行判断.【详解】当时,,则抛物线与轴的交点坐标为,当时,,解得,抛物线与轴的交点坐标为,所以抛物线与坐标轴有2个交点.故选C.【点睛】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.5、B【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.【点睛】本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.6、C【分析】根据题意得出摸出黑球的频率,继而根据频数=总数×频率计算即可.【详解】∵小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,∴口袋中黑球的个数可能是10×60%=6个.故选:C.【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.7、D【分析】先根据直角三角形的性质和角平分线的性质可得,再根据等边对等角可得,最后在中,利用直角三角形的性质即可得.【详解】平分则在中,故选:D.【点睛】本题考查了等腰三角形的性质、角平分线的性质、直角三角形的性质:(1)两锐角互余;(2)所对的直角边等于斜边的一半;根据等腰三角形的性质得出是解题关键.8、B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=.

故选B.9、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.10、B【分析】根据一元二次方程的根的判别式即可求出答案.【详解】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≤1且k≠0,故选:B.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.二、填空题(每小题3分,共24分)11、【解析】∵在△ABC中,∠C=90°,,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案为.12、∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:∠B=∠E.【详解】添加条件:∠B=∠E;

∵,∠B=∠E,

∴△ABC∽△AED,

故答案为:∠B=∠E(答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.13、【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.14、【分析】连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,

可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件D是线段AC中点,DH∥AF,可得2DH=AF,则点D(2m,),证明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,

∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,

∴A与B关于原点对称,

∴O是AB的中点,

∵BE⊥AE,

∴OE=OA,

∴∠OAE=∠AEO,

∵AE为∠BAC的平分线,

∴∠DAE=∠AEO,

∴AD∥OE,

∴S△ACE=S△AOC,

∵D是线段AC中点,的面积为4,

∴AD=DC,S△ACE=S△AOC=8,

设点A(m,),∵D是线段AC中点,DH∥AF,

∴2DH=AF,

∴点D(2m,),∵CH∥GD,AG∥DH,

∴∠ADG=∠DCH,∠DAG=∠CDH,在△AGD和△DHC中,

∴S△HDC=S△ADG,

∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC=k+k+=8;

∴k=8,

∴k=.

故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.15、【分析】先求出底面圆的周长,然后根据扇形的面积公式:即可求出该圆锥的侧面积.【详解】解:底面圆的周长为,即圆锥的侧面展开后的弧长为,∵母线长为9,∴圆锥的侧面展开后的半径为9,∴圆锥的侧面积故答案为:【点睛】此题考查的是求圆锥的侧面积,掌握扇形的面积公式:是解决此题的关键.16、1【分析】根据比例尺的意义,可得答案.【详解】解:,故答案为:1.【点睛】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.17、m>﹣【分析】根据根的判别式,令△>0,即可计算出m的值.【详解】∵关于x的方程x2﹣x﹣m=0有两个不相等实根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案为﹣.【点睛】本题考查了一元二次方程系数的问题,掌握根的判别式是解题的关键.18、【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案为:【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.三、解答题(共66分)19、(1)证明见解析;(2)①30°;②22.5°.【解析】分析:(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.详解:(1)证明:连接OC,如图,.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20、(1)C(m,﹣1);(3)﹣3≤m≤0或3≤m≤3.【分析】(1)化成顶点式,即可求得顶点C的坐标;(3)由顶点C的坐标可知,抛物线的顶点C在直线y=﹣1上移动.分别求出抛物线过点A、点B时,m的值,画出此时函数的图象,结合图象即可求出m的取值范围.【详解】(1)y=x3﹣3mx+m3﹣1=(x﹣m)3﹣1,∴抛物线顶点为C(m,﹣1).(3)把A(0,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=m3﹣1,解得m=±3.把B(3,3)的坐标代入y=x3﹣3mx+m3﹣1,得3=33﹣3m×3+m3﹣1,即m3﹣3m=0,解得m=0或m=3.结合函数图象可知:﹣3≤m≤0或3≤m≤3.【点睛】本题考查了二次函数的图象与系数的关系,二次函数图象上点的坐标特征,提现了转化思想和数形结合思想的应用.21、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,则抛物线表达式为:y=(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;综上所述,m的值为:3+3或3﹣3或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.22、灰太狼秒钟后能抓到懒羊羊【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.23、(1)m(2)米【解析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得EM=84米;在RT△HEM中,求得,继而求得米.详解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB长米,M是AB的中点,∴AM=(米),∴AF=MF=AM•cos∠AMF=(米),在中,∵斜坡AN的坡比为∶1,∴,∴,∴MN=MF-NF=50-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论