版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A. B. C. D.2.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则()A. B. C. D.3.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×24.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.5.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm,则这两市之间的实际距离为()km.A.20000000 B.200000 C.200 D.20000006.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.7.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.8.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE重合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.759.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°10.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.11.点P(﹣1,2)关于原点对称的点Q的坐标为()A.(1,2) B.(﹣1,﹣2) C.(1.﹣2) D.(﹣1,﹣2)12.关于反比例函数,下列说法正确的是()A.点在它的图象上 B.它的图象经过原点C.当时,y随x的增大而增大 D.它的图象位于第一、三象限二、填空题(每题4分,共24分)13.计算:|﹣3|+(2019﹣π)0﹣+()-2=_______.14.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是.15.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.16.若点A(-2,a),B(1,b),C(4,c)都在反比例函数的图象上,则a、b、c大小关系是________.17.已知圆的半径为,点在圆外,则长度的取值范围为___________.18.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)三、解答题(共78分)19.(8分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)20.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?21.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?22.(10分)如图,等腰Rt△BPQ的顶点P在正方形ABCD的对角线AC上(P与AC不重合),∠PBQ=90°,QP与BC交于E,QP延长线交AD于F,连CQ.(1)①求证:AP=CQ;②求证:(2)当时,求的值.23.(10分)如图,的直径垂直于弦,垂足为,为延长线上一点,且.(1)求证:为的切线;(2)若,,求的半径.24.(10分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.25.(12分)我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如=3+.这种方法我们称为“分离常数法”.(1)如果=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=的图象是由哪个反比例函数的图象经过怎样的变换得到?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.2、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【详解】解:∵点A、B、C为反比例函数(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,
∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,
∴S1=S2<S3,∴,故选:C.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.3、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.4、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.5、C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm,则根据比例尺为1:800000,列出比例式:1:800000=2.5:x,解得x=1.1cm=200km故选:C.【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.6、D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.7、D【解析】第一个月是560,第二个月是560(1+x),第三月是560(1+x)2,所以第一季度总计560+560(1+x)+560(1+x)2=1850,选D.8、A【分析】画出图形求解即可.【详解】解:∵三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),BA∥DE,∴旋转角=90°+45°﹣30°=105°,故选:A.【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.9、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.10、C【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.【详解】∵抛物线与轴交于、两点∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中点,O是AB的中点∴OQ为△ABP中位线,即OQ=BP又∵P在圆C上,且半径为2,∴当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=BP=.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.11、C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【点睛】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.12、D【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】解:A、把(2,-1)代入,得1=-1不成立,故选项错误;B、反比例函数图像不经过原点,故选项错误;C、当x>0时,y随x的增大而减小,故选项错误.D、∵k=2>0,∴它的图象在第一、三象限,故选项正确;故选D.【点睛】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.二、填空题(每题4分,共24分)13、【分析】直接利用负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质分别化简得出答案.【详解】解:原式=,故答案为:.【点睛】此题主要考查了负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质,正确利用法则化简各数是解题关键.14、15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC的度数即可.【详解】∵将绕点顺时针方向旋转50°得到,∴,又∵,∴,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.15、y=2(x+2)2﹣1【解析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.16、a>c>b【分析】根据题意,分别求出a、b、c的值,然后进行判断,即可得到答案.【详解】解:∵点A、B、C都在反比例函数的图象上,则当时,则;当时,则;当时,则;∴;故答案为:.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.18、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.三、解答题(共78分)19、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.【解析】(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D.∵∠AOB=115°,∴∠BOD=65°.∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.20、(1)20%;(2)能.【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.21、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润×销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可.试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2),∵x≥45,抛物线的开口向下,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.考点:二次函数的应用.22、(1)①证明见解析;②证明见解析;(2)【分析】(1)①证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
②根据正方形的性质和全等三角形的性质得到∠DAC=∠BAC,∠APF=∠ABP,即可证得△APF∽△ABP,再根据相似三角形的性质即可求解;(2)设正方形边长为,根据已知条件可求得PA的长,再根据第(1)②的结论可求得AF的长,从而求得答案.【详解】证明:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△PBQ为等腰直角三角形,∴∠PBQ=90°,PB=BQ,∵∠ABP+∠BPC=∠BPC+∠CBQ=,∴∠ABP=∠CBQ,在△ABP与△CBQ中,,∴△ABP≌△CBQ,∴AP=CQ;②如图,∵∠CPB=∠3+∠4=∠1+∠2,∵∠4=∠1=45°,∴∠3=∠2,∴∠5=∠2,∵∠6=∠1=45°,∴△PFA∽△BPA,∴,∴即;(2)设正方形边长为,则,∵,∴,∴PA=,∵,∴,解得:AF=,∴DF=,∴.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;灵活运用相似三角形的判定与性质是解题的关键.23、(1)见解析;(2)【分析】(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径.【详解】(1)连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圆的切线;(2)∵CD是圆的直径,CD⊥AB,∴,设圆的半径是R,在直角△OEB中,根据勾股定理得:,解得:【点睛】本题考查了切线的判定,圆周角定理,勾股定理,熟练掌握切线的判定定理是解题的关键.24、点C坐标为(2,2),y=【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【详解】解:过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高考物理二轮复习 教材情境4 基于教材实验的“科学实验”命题
- 中考备战策略化学第7讲 质量守恒定律及化学方程
- 分析题解答方法及实例(马原部分)
- 4.7 集成功率放大器
- 《教学目标的编写》课件
- 毛泽东思想和中国特色社会主义理论体系概论(甘肃工业职业技术学院)知到智慧树答案
- 《精益生产》课件
- 《中国画》课件-1.2.2 中国画简史(二)
- 电影院建设可行性研究报告
- 《航发原理总结》课件
- 初中语文七年级上册第五单元16《猫》(第一课时)习题(含解析)
- 2024届高考一轮散文复习《比邻而居》、《九一八致弟弟书》课件
- 血液透析用水处理和透析液2
- 生物反馈治疗便秘
- 全220V清洗机电路原理图和接线方法单相电机常见故障排查
- 华为解决方案营销化五环十四招(简版)
- 大学生劳动实践清单(本科收藏版)
- 西屋破壁机料理机使用说明
- 慢阻肺的慢病管理-课件
- 2023年建筑工程施工质量验收规范检验批填写全套表格示范填写与说明
- 特种设备运行故障和事故记录表
评论
0/150
提交评论