版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电大微积分初步考试小抄一、填空题⒈函数SKIPIF1<0的定义域是(-∞,5).5-SKIPIF1<0>0→SKIPIF1<0<5⒉SKIPIF1<01.SKIPIF1<0,SKIPIF1<0⒊已知SKIPIF1<0,则SKIPIF1<0=SKIPIF1<0.⒋若SKIPIF1<0,则SKIPIF1<0SKIPIF1<0.⒌微分方程SKIPIF1<0的阶数是三阶.∵SKIPIF1<06.函数SKIPIF1<0的定义域是(-2,-1)U(-1,∞)SKIPIF1<0∴SKIPIF1<07.SKIPIF1<02.SKIPIF1<0SKIPIF1<08.若y=x(x–1)(x–2)(x–3),则SKIPIF1<0(0)=-6y=x(x-1)(x-2)(x-3)=(x2-x)(x2-5x+6)=x4-5x3+6x2-x3+5x2-6x=x4-6x3+11x2-6x,SKIPIF1<0SKIPIF1<0(把0带入X)SKIPIF1<09.SKIPIF1<0SKIPIF1<0SKIPIF1<0或SKIPIF1<010.微分方程SKIPIF1<0的特解为y=ex.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又y(0)=1(x=0,y=1)SKIPIF1<0SKIPIF1<011.函数SKIPIF1<0的定义域是SKIPIF1<0SKIPIF1<012.若函数SKIPIF1<0,在SKIPIF1<0处连续,则SKIPIF1<01.SKIPIF1<0(SKIPIF1<0在SKIPIF1<0处连续)∵SKIPIF1<0SKIPIF1<0(无穷小量x有界函数)13.曲线SKIPIF1<0在点SKIPIF1<0处的切线方程是SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<014.SKIPIF1<0sinx+c 15.微分方程SKIPIF1<0的阶数为三阶16.函数SKIPIF1<0的定义域是(2,3)U(3,∞)SKIPIF1<017.SKIPIF1<01/218.已知SKIPIF1<0,则SKIPIF1<0=27+27ln3SKIPIF1<0SKIPIF1<019.SKIPIF1<0=ex2+c20.微分方程SKIPIF1<0的阶数为四阶二、单项选择题⒈设函数SKIPIF1<0,则该函数是(偶函数).∵SKIPIF1<0⒉函数SKIPIF1<0的间断点是(SKIPIF1<0)分母无意义的点是间断点∴SKIPIF1<0⒊下列结论中(SKIPIF1<0在SKIPIF1<0处不连续,则一定在SKIPIF1<0处不可导)正确.可导必连续,伹连续并一定可导;极值点可能在驻点上,也可能在使导数无意义的点上⒋如果等式SKIPIF1<0,则SKIPIF1<0(SKIPIF1<0)SKIPIF1<0SKIPIF1<0⒌下列微分方程中,(SKIPIF1<0 )是线性微分方程.6.设函数SKIPIF1<0,则该函数是(奇函数).7.当SKIPIF1<0(2)时,函数SKIPIF1<0在SKIPIF1<0处连续.8.下列函数在指定区间SKIPIF1<0上单调减少的是(SKIPIF1<0).9.以下等式正确的是(SKIPIF1<0)10.下列微分方程中为可分离变量方程的是(SKIPIF1<0)11.设SKIPIF1<0,则SKIPIF1<0(SKIPIF1<0)12.若函数f(x)在点x0处可导,则(SKIPIF1<0,但SKIPIF1<0)是错误的.13.函数SKIPIF1<0在区间SKIPIF1<0是(先减后增)14.SKIPIF1<0(SKIPIF1<0)15.下列微分方程中为可分离变量方程的是(SKIPIF1<0)16.下列函数中为奇函数是(SKIPIF1<0)17.当SKIPIF1<0(SKIPIF1<0)时,函数SKIPIF1<0在SKIPIF1<0处连续.18.函数SKIPIF1<0在区间SKIPIF1<0是(先单调下降再单调上升)19.在切线斜率为2x的积分曲线族中,通过点(1,4)的曲线为(y=x2+3).20.微分方程SKIPIF1<0的特解为(SKIPIF1<0).三、计算题⒈计算极限SKIPIF1<0.解:SKIPIF1<0⒉设SKIPIF1<0,求SKIPIF1<0.解:SKIPIF1<0SKIPIF1<0SKIPIF1<0,u=-2xSKIPIF1<0′·(-2x)′=eu·(-2)=-2·e-2x∴y′=-2e-2x+SKIPIF1<0∴dy=(-2·e-2x+SKIPIF1<0)dx⒊计算不定积分SKIPIF1<0解:令u=SKIPIF1<0,u′=SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0·2du=SKIPIF1<0=2(-cos)+c=-2cosSKIPIF1<0⒋计算定积分SKIPIF1<0u=x,v′=ex,v=ex∴SKIPIF1<0SKIPIF1<0v′dx=uvSKIPIF1<0SKIPIF1<0∴原式=2SKIPIF1<0SKIPIF1<0SKIPIF1<0,求SKIPIF1<0解:SKIPIF1<0y1=lncosxy1=lnu1,u=cosx∴SKIPIF1<0y1=SKIPIF1<0∴dy=(SKIPIF1<0)dxSKIPIF1<0解:SKIPIF1<0令u=1-2x,u′=-2∴SKIPIF1<0SKIPIF1<0SKIPIF1<0解:u=x,SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,求SKIPIF1<0y1=sin3xy1=sinu,u=3x,SKIPIF1<0∴y′=2xln2+3cos3x∴dy=(2xln2+3cos3x)dxSKIPIF1<0SKIPIF1<0u=x,v′=cosx,v=sinxSKIPIF1<0SKIPIF1<0SKIPIF1<0令u=lnx,u′=SKIPIF1<0,du=SKIPIF1<0dx,1≤x≤e0≤lnx≤1∴SKIPIF1<0∴原式=1+5·SKIPIF1<0=SKIPIF1<0SKIPIF1<0解:SKIPIF1<0SKIPIF1<0,求SKIPIF1<0解:SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)SKIPIF1<0SKIPIF1<0解:SKIPIF1<0u=2x-1,SKIPIF1<0=2du=2dx∴SKIPIF1<0SKIPIF1<0SKIPIF1<0解:SKIPIF1<0u=x,SKIPIF1<0,SKIPIF1<0SKIPIF1<0四、应用题(本题16分)用钢板焊接一个容积为4SKIPIF1<0的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?解:设水箱的底边长为x,高为h,表面积为s,且有h=SKIPIF1<0所以S(x)=x2+4xh=x2+SKIPIF1<0SKIPIF1<0令SKIPIF1<0(x)=0,得x=2因为本问题存在最小值,且函数的驻点唯一,所以x=2,h=1时水箱的表面积最小。此时的费用为S(2)×10+40=160元欲用围墙围成面积为216平方米的一块矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽各选取多大尺寸,才能使所用建筑材料最省?设长方形一边长为x,∵S=216∴另一边长为216/x∴总材料y=2x+3·216/x=2x+SKIPIF1<0y′=2+648·(x-1)′=2+648·(-1·)=2-SKIPIF1<0y′=0得2=SKIPIF1<0∴x2=324∴x=18∴一边长为18,一边长为12时,用料最省.欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?设底边长为a∴底面积为a2a2h=v=32∴h=SKIPIF1<0∴表面积为a2+4ah=a2+4a·SKIPIF1<0=a2+SKIPIF1<0y=a2+SKIPIF1<0,y′=2a+128·(-SKIPIF1<0)=2a-SKIPIF1<0y′=0得2a=SKIPIF1<0∴a3=64∴a=4∴底面边长为4,h=SKIPIF1<0=2设矩形的周长为120厘米,以矩形的一边为轴旋转一周得一圆柱体。试求矩形的边长为多少时,才能使圆柱体的体积最大。解:设矩形一边长为x,另一边为60-x以AD为轴转一周得圆柱,底面半径x,高60-x∴V=SKIPIF1<0SKIPIF1<0SKIPIF1<0得:SKIPIF1<0∴矩形一边长为40,另一边长为20时,Vmax
作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数SKIPIF1<0的定义域是.答案:SKIPIF1<02.函数SKIPIF1<0的定义域是.答案:SKIPIF1<03.函数SKIPIF1<0的定义域是.答案:SKIPIF1<04.函数SKIPIF1<0,则SKIPIF1<0 .答案:SKIPIF1<05.函数SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<06.函数SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<07.函数SKIPIF1<0的间断点是.答案:SKIPIF1<08.SKIPIF1<0.答案:19.若SKIPIF1<0,则SKIPIF1<0.答案:210.若SKIPIF1<0,则SKIPIF1<0.答案:1.5;二、单项选择题(每小题2分,共24分)1.设函数SKIPIF1<0,则该函数是().答案:BA.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.设函数SKIPIF1<0,则该函数是().答案:AA.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数3.函数SKIPIF1<0的图形是关于()对称.答案:DA.SKIPIF1<0B.SKIPIF1<0轴C.SKIPIF1<0轴D.坐标原点4.下列函数中为奇函数是( C).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.函数SKIPIF1<0的定义域为( ).答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0且SKIPIF1<0D.SKIPIF1<0且SKIPIF1<06.函数SKIPIF1<0的定义域是().答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.设SKIPIF1<0,则SKIPIF1<0()答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.下列各函数对中,( )中的两个函数相等.答案:DA.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0SKIPIF1<09.当SKIPIF1<0时,下列变量中为无穷小量的是()答案:C.A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.当SKIPIF1<0()时,函数SKIPIF1<0,在SKIPIF1<0处连续.答案:BA.0B.1C.SKIPIF1<0D.SKIPIF1<011.当SKIPIF1<0()时,函数SKIPIF1<0在SKIPIF1<0处连续答案:DA.0B.1C.SKIPIF1<0D.SKIPIF1<012.函数SKIPIF1<0的间断点是()答案:AA.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0D.无间断点三、解答题(每小题7分,共56分)⒈计算极限SKIPIF1<0.解SKIPIF1<02.计算极限SKIPIF1<0解SKIPIF1<03.SKIPIF1<0解:原式=SKIPIF1<04.计算极限SKIPIF1<0解SKIPIF1<05.计算极限SKIPIF1<0.解SKIPIF1<06.计算极限SKIPIF1<0.解SKIPIF1<0SKIPIF1<07.计算极限SKIPIF1<0解SKIPIF1<08.计算极限SKIPIF1<0.解SKIPIF1<0一、填空题(每小题2分,共20分)1.曲线SKIPIF1<0在SKIPIF1<0点的斜率是.答案:SKIPIF1<02.曲线SKIPIF1<0在SKIPIF1<0点的切线方程是.答案:SKIPIF1<03.曲线SKIPIF1<0在点SKIPIF1<0处的切线方程是 .答案:SKIPIF1<04.SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<05.若y=x(x–1)(x–2)(x–3),则SKIPIF1<0(0)= .答案:SKIPIF1<06.已知SKIPIF1<0,则SKIPIF1<0=.答案:SKIPIF1<07.已知SKIPIF1<0,则SKIPIF1<0=.答案:SKIPIF1<08.若SKIPIF1<0,则SKIPIF1<0 .答案:SKIPIF1<09.函数SKIPIF1<0的单调增加区间是.答案:SKIPIF1<010.函数SKIPIF1<0在区间SKIPIF1<0内单调增加,则a应满足 .答案:SKIPIF1<0二、单项选择题(每小题2分,共24分)1.函数SKIPIF1<0在区间SKIPIF1<0是()答案:DA.单调增加B.单调减少C.先增后减D.先减后增2.满足方程SKIPIF1<0的点一定是函数SKIPIF1<0的()答案:C.A.极值点B.最值点C.驻点D.间断点3.若SKIPIF1<0,则SKIPIF1<0=().答案:CA.2B.1C.-1D.–24.设SKIPIF1<0,则SKIPIF1<0().答案:BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.设SKIPIF1<0是可微函数,则SKIPIF1<0().答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.曲线SKIPIF1<0在SKIPIF1<0处切线的斜率是().答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.若SKIPIF1<0,则SKIPIF1<0().答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.若SKIPIF1<0,其中SKIPIF1<0是常数,则SKIPIF1<0().答案CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.下列结论中(A)不正确.答案:CA.SKIPIF1<0在SKIPIF1<0处连续,则一定在SKIPIF1<0处可微.B.SKIPIF1<0在SKIPIF1<0处不连续,则一定在SKIPIF1<0处不可导.C.可导函数的极值点一定发生在其驻点上.D.若SKIPIF1<0在[a,b]内恒有SKIPIF1<0,则在[a,b]内函数是单调下降的.10.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.SKIPIF1<0,但SKIPIF1<0C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微11.下列函数在指定区间SKIPIF1<0上单调增加的是().答案:BA.sinxB.exC.x2 D.3–x12.下列结论正确的有( ).答案:AA.x0是f(x)的极值点,且SKIPIF1<0(x0)存在,则必有SKIPIF1<0(x0)=0B.x0是f(x)的极值点,则x0必是f(x)的驻点C.若SKIPIF1<0(x0)=0,则x0必是f(x)的极值点D.使SKIPIF1<0不存在的点x0,一定是f(x)的极值点三、解答题(每小题7分,共56分)1设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<0SKIPIF1<0或SKIPIF1<02.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<03.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<04.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<0或SKIPIF1<05.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解对方程两边同时对x求微分,得SKIPIF1<06.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解原方程可化为SKIPIF1<0,SKIPIF1<0SKIPIF1<07.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解:方程两边同时对SKIPIF1<0求微分,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.8.设SKIPIF1<0,求SKIPIF1<0.解:方程两边同时对SKIPIF1<0求微分,得SKIPIF1<0SKIPIF1<0一、填空题(每小题2分,共20分)1.若SKIPIF1<0的一个原函数为SKIPIF1<0,则SKIPIF1<0。答案:`SKIPIF1<0(c为任意常数)或SKIPIF1<02.若SKIPIF1<0的一个原函数为SKIPIF1<0,则SKIPIF1<0。答案:SKIPIF1<0或SKIPIF1<03.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<04.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<05.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<06.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<07.SKIPIF1<0 SKIPIF1<0 .答案:SKIPIF1<08.SKIPIF1<0 .答案:SKIPIF1<09.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<010.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0二、单项选择题(每小题2分,共16分)1.下列等式成立的是().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.若SKIPIF1<0,则SKIPIF1<0().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.若SKIPIF1<0,则SKIPIF1<0().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.以下计算正确的是()答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0SKIPIF1<06.SKIPIF1<0()答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.SKIPIF1<0=( ).答案:CA.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.如果等式SKIPIF1<0,则SKIPIF1<0()答案BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0三、计算题(每小题7分,共35分)1.SKIPIF1<0解SKIPIF1<0或SKIPIF1<02.SKIPIF1<0解SKIPIF1<03.SKIPIF1<0解SKIPIF1<04.SKIPIF1<0SKIPIF1<05.SKIPIF1<0解SKIPIF1<0四、极值应用题(每小题12分,共24分)1.设矩形的周长为120厘米,以矩形的一边为轴旋转一周得一圆柱体。试求矩形的边长为多少时,才能使圆柱体的体积最大。1.解:设矩形SKIPIF1<0的一边SKIPIF1<0厘米,则SKIPIF1<0厘米,当它沿直线SKIPIF1<0旋转一周后,得到圆柱的体积SKIPIF1<0令SKIPIF1<0得SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0.SKIPIF1<0是函数SKIPIF1<0的极大值点,也是最大值点.此时SKIPIF1<0答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大.SKIPIF1<02.欲用围墙围成面积为216平方米的一成矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?2.解:设成矩形有土地的宽为SKIPIF1<0米,则长为SKIPIF1<0米,于是围墙的长度为SKIPIF1<0令SKIPIF1<0得SKIPIF1<0 SKIPIF1<0易知,当SKIPIF1<0时,SKIPIF1<0取得唯一的极小值即最小值,此时SKIPIF1<0答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省.五、证明题(本题5分)1函数SKIPIF1<0在(SKIPIF1<0是单调增加的.SKIPIF1<0一、填空题(每小题2分,共20分)1.SKIPIF1<0答案:SKIPIF1<02.SKIPIF1<0答案:SKIPIF1<0或23.已知曲线SKIPIF1<0在任意点SKIPIF1<0处切线的斜率为SKIPIF1<0,且曲线过SKIPIF1<0,则该曲线的方程是。答案:SKIPIF1<0或SKIPIF1<04.若SKIPIF1<0.答案:2或45.由定积分的几何意义知,SKIPIF1<0=。答案:SKIPIF1<06.SKIPIF1<0.答案:07.SKIPIF1<0=.答案:SKIPIF1<08.微分方程SKIPIF1<0的特解为.答案:1或SKIPIF1<09.微分方程SKIPIF1<0的通解为.答案:SKIPIF1<0或SKIPIF1<010.微分方程SKIPIF1<0的阶数为.答案:2或4二、单项选择题(每小题2分,共20分)1.在切线斜率为2x的积分曲线族中,通过点(1,4)的曲线为().答案:AA.y=x2+3B.y=x2+4C.SKIPIF1<0D.SKIPIF1<02.若SKIPIF1<0=2,则k=().答案:AA.1B.-1C.0D.SKIPIF1<03.下列定积分中积分值为0的是().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.设SKIPIF1<0是连续的奇函数,则定积分SKIPIF1<0()答案:D5.SKIPIF1<0().答案:DA.0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.下列无穷积分收敛的是().答案:BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.下列无穷积分收敛的是().答案:BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.下列微分方程中,( )是线性微分方程.答案:DA.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.微分方程SKIPIF1<0的通解为().答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.下列微分方程中为可分离变量方程的是()答案:BA.SKIPIF1<0;B.SKIPIF1<0;C.SKIPIF1<0;D.SKIPIF1<0三、计算题(每小题7分,共56分)1.SKIPIF1<0解SKIPIF1<0SKIPIF1<0或SKIPIF1<02.SKIPIF1<0解SKIPIF1<03.SKIPIF1<0解利用分部积分法SKIPIF1<0SKIPIF1<04.SKIPIF1<0SKIPIF1<05.SKIPIF1<0SKIPIF1<06.求微分方程SKIPIF1<0满足初始条件SKIPIF1<0的特解.SKIPIF1<0SKIPIF1<0即通解SKIPIF1<07.求微分方程SKIPIF1<0的通解。SKIPIF1<0SKIPIF1<0即通解为SKIPIF1<0.四、证明题(本题4分)证明等式SKIPIF1<0。SKIPIF1<0
作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数SKIPIF1<0的定义域是.答案:SKIPIF1<02.函数SKIPIF1<0的定义域是.答案:SKIPIF1<03.函数SKIPIF1<0的定义域是.答案:SKIPIF1<04.函数SKIPIF1<0,则SKIPIF1<0 .答案:SKIPIF1<05.函数SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<06.函数SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<07.函数SKIPIF1<0的间断点是.答案:SKIPIF1<08.SKIPIF1<0.答案:19.若SKIPIF1<0,则SKIPIF1<0.答案:210.若SKIPIF1<0,则SKIPIF1<0.答案:1.5;二、单项选择题(每小题2分,共24分)1.设函数SKIPIF1<0,则该函数是().答案:BA.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.设函数SKIPIF1<0,则该函数是().答案:AA.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数3.函数SKIPIF1<0的图形是关于()对称.答案:DA.SKIPIF1<0B.SKIPIF1<0轴C.SKIPIF1<0轴D.坐标原点4.下列函数中为奇函数是( C).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.函数SKIPIF1<0的定义域为( ).答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0且SKIPIF1<0D.SKIPIF1<0且SKIPIF1<06.函数SKIPIF1<0的定义域是().答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.设SKIPIF1<0,则SKIPIF1<0()答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.下列各函数对中,( )中的两个函数相等.答案:DA.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0SKIPIF1<09.当SKIPIF1<0时,下列变量中为无穷小量的是()答案:C.A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.当SKIPIF1<0()时,函数SKIPIF1<0,在SKIPIF1<0处连续.答案:BA.0B.1C.SKIPIF1<0D.SKIPIF1<011.当SKIPIF1<0()时,函数SKIPIF1<0在SKIPIF1<0处连续答案:DA.0B.1C.SKIPIF1<0D.SKIPIF1<012.函数SKIPIF1<0的间断点是()答案:AA.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0D.无间断点三、解答题(每小题7分,共56分)⒈计算极限SKIPIF1<0.解SKIPIF1<02.计算极限SKIPIF1<0解SKIPIF1<03.SKIPIF1<0解:原式=SKIPIF1<04.计算极限SKIPIF1<0解SKIPIF1<05.计算极限SKIPIF1<0.解SKIPIF1<06.计算极限SKIPIF1<0.解SKIPIF1<0SKIPIF1<07.计算极限SKIPIF1<0解SKIPIF1<08.计算极限SKIPIF1<0.解SKIPIF1<0一、填空题(每小题2分,共20分)1.曲线SKIPIF1<0在SKIPIF1<0点的斜率是.答案:SKIPIF1<02.曲线SKIPIF1<0在SKIPIF1<0点的切线方程是.答案:SKIPIF1<03.曲线SKIPIF1<0在点SKIPIF1<0处的切线方程是 .答案:SKIPIF1<04.SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<05.若y=x(x–1)(x–2)(x–3),则SKIPIF1<0(0)= .答案:SKIPIF1<06.已知SKIPIF1<0,则SKIPIF1<0=.答案:SKIPIF1<07.已知SKIPIF1<0,则SKIPIF1<0=.答案:SKIPIF1<08.若SKIPIF1<0,则SKIPIF1<0 .答案:SKIPIF1<09.函数SKIPIF1<0的单调增加区间是.答案:SKIPIF1<010.函数SKIPIF1<0在区间SKIPIF1<0内单调增加,则a应满足 .答案:SKIPIF1<0二、单项选择题(每小题2分,共24分)1.函数SKIPIF1<0在区间SKIPIF1<0是()答案:DA.单调增加B.单调减少C.先增后减D.先减后增2.满足方程SKIPIF1<0的点一定是函数SKIPIF1<0的()答案:C.A.极值点B.最值点C.驻点D.间断点3.若SKIPIF1<0,则SKIPIF1<0=().答案:CA.2B.1C.-1D.–24.设SKIPIF1<0,则SKIPIF1<0().答案:BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.设SKIPIF1<0是可微函数,则SKIPIF1<0().答案:DA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.曲线SKIPIF1<0在SKIPIF1<0处切线的斜率是().答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.若SKIPIF1<0,则SKIPIF1<0().答案:CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.若SKIPIF1<0,其中SKIPIF1<0是常数,则SKIPIF1<0().答案CA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.下列结论中(A)不正确.答案:CA.SKIPIF1<0在SKIPIF1<0处连续,则一定在SKIPIF1<0处可微.B.SKIPIF1<0在SKIPIF1<0处不连续,则一定在SKIPIF1<0处不可导.C.可导函数的极值点一定发生在其驻点上.D.若SKIPIF1<0在[a,b]内恒有SKIPIF1<0,则在[a,b]内函数是单调下降的.10.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.SKIPIF1<0,但SKIPIF1<0C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微11.下列函数在指定区间SKIPIF1<0上单调增加的是().答案:BA.sinxB.exC.x2 D.3–x12.下列结论正确的有( ).答案:AA.x0是f(x)的极值点,且SKIPIF1<0(x0)存在,则必有SKIPIF1<0(x0)=0B.x0是f(x)的极值点,则x0必是f(x)的驻点C.若SKIPIF1<0(x0)=0,则x0必是f(x)的极值点D.使SKIPIF1<0不存在的点x0,一定是f(x)的极值点三、解答题(每小题7分,共56分)1设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<0SKIPIF1<0或SKIPIF1<02.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<03.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<04.设SKIPIF1<0,求SKIPIF1<0.解SKIPIF1<0或SKIPIF1<05.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解对方程两边同时对x求微分,得SKIPIF1<06.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解原方程可化为SKIPIF1<0,SKIPIF1<0SKIPIF1<07.设SKIPIF1<0是由方程SKIPIF1<0确定的隐函数,求SKIPIF1<0.解:方程两边同时对SKIPIF1<0求微分,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.8.设SKIPIF1<0,求SKIPIF1<0.解:方程两边同时对SKIPIF1<0求微分,得SKIPIF1<0SKIPIF1<0一、填空题(每小题2分,共20分)1.若SKIPIF1<0的一个原函数为SKIPIF1<0,则SKIPIF1<0。答案:`SKIPIF1<0(c为任意常数)或SKIPIF1<02.若SKIPIF1<0的一个原函数为SKIPIF1<0,则SKIPIF1<0。答案:SKIPIF1<0或SKIPIF1<03.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<04.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<05.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<06.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<07.SKIPIF1<0 SKIPIF1<0 .答案:SKIPIF1<08.SKIPIF1<0 .答案:SKIPIF1<09.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<010.若SKIPIF1<0,则SKIPIF1<0.答案:SKIPIF1<0二、单项选择题(每小题2分,共16分)1.下列等式成立的是().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.若SKIPIF1<0,则SKIPIF1<0().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.若SKIPIF1<0,则SKIPIF1<0().答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.以下计算正确的是()答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0SKIPIF1<06.SKIPIF1<0()答案:AA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.SKIPIF1<0=( ).答案:CA.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.如果等式SKIPIF1<0,则SKIPIF1<0()答案BA.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0三、计算题(每小题7分,共35分)1.SKIPIF1<0解SKIPIF1<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高一年级体育教学计划
- 2024艺体工作计划
- 2024年室内设计师的个人工作计划范文范文
- 六年级下学期体育教学工作计划
- 有关办公室的工作计划范文
- 2024小学语文名师工作室个人工作计划
- X区商务局2024年上半年工作总结和下半年工作计划
- 安全主任工作计划
- 房地产中介年初工作计划开头
- 小学2019年秋季少先队工作计划范文
- 人工智能的诞生与发展课件
- 瘢痕与瘢痕疙瘩的综合治疗课件
- 二年级数字谜二
- 信用风险加权资产计量与管理培训教材课件
- 深基坑安全管理(安全培训)课件
- 人大432历年真题深度解析
- 剪映短视频剪辑进阶培训课件
- 丑奴儿·书博山道中壁优秀课件
- 《-安徒生童话-阅读分享》优秀课件
- 科学哲学和技术哲学导论课件
- 《相等的角》-完整版课件
评论
0/150
提交评论