2022年四川省遂宁第二中学数学九年级第一学期期末考试模拟试题含解析_第1页
2022年四川省遂宁第二中学数学九年级第一学期期末考试模拟试题含解析_第2页
2022年四川省遂宁第二中学数学九年级第一学期期末考试模拟试题含解析_第3页
2022年四川省遂宁第二中学数学九年级第一学期期末考试模拟试题含解析_第4页
2022年四川省遂宁第二中学数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.2.一元二次方程2x2+3x+5=0的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根3.已知函数是的图像过点,则的值为()A.-2 B.3 C.-6 D.64.一次函数与二次函数在同一平面直角坐标系中的图象可能是().A. B. C. D.5.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.6.某种品牌运动服经过两次降价,每件零售价由520元降为312元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A. B.C. D.7.下列图形中的角是圆周角的是()A. B.C. D.8.已知二次函数的图象如图所示,对于下列结论:①;②;③;④;⑤方程的根是,,其中正确结论的个数是()A.5 B.4 C.3 D.29.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A. B.4 C. D.10.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.二、填空题(每小题3分,共24分)11.如图,在中,,点D、E分别在边、上,且,如果,,那么________.12.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.13.如图,,分别是边,上的点,,若,,,则______.14.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个15.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.16.在△ABC和△A'B'C'中,===,△ABC的周长是20cm,则△A'B'C的周长是_____.17.如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为________.18.已知锐角α,满足tanα=2,则sinα=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.20.(6分)(1)计算:(2)解方程:21.(6分)已知关于x的一元二次方程2x2+(2k+1)x+k=1.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.22.(8分)如图,平面直角坐标系内,二次函数的图象经过点,与轴交于点.求二次函数的解析式;点为轴下方二次函数图象上一点,连接,若的面积是面积的一半,求点坐标.23.(8分)计算:2cos45°﹣tan60°+sin30°﹣tan45°24.(8分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.25.(10分)已知的半径长为,弦与弦平行,,,求间的距离.26.(10分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)

参考答案一、选择题(每小题3分,共30分)1、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.2、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=9﹣4×2×5=﹣31<0,故选:D.【点睛】本题考查的是一元二次方程系数与根的关系,当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根.3、C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数的图象经过点(-2,3),∴k=-2×3=-1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B.∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.5、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.6、A【分析】根据题意可得到等量关系:原零售价(1-百分率)(1-百分率)=降价后的售价,然后根据等量关系列出方程即可.【详解】解:由题意得:,故答案选A.【点睛】本题考查一元二次方程与实际问题,解题的关键是找出题目中的等量关系,列出方程.7、C【解析】根据圆周角的定义来判断即可.圆周角必须符合两个条件:顶点在圆上,两边与圆相交,二者缺一都不是.【详解】解:圆周角的定义是:顶点在圆上,并且角的两边和圆相交的角叫圆周角.A、图中的角的顶点不在圆上,不是圆周角;B、图中的角的顶点也不在圆上,不是圆周角;C、图中的角的顶点在圆上,两边与圆相交,是圆周角;D.图中的角的顶点在圆上,而两边与圆不相交,不是圆周角;故选:【点睛】本题考查了圆周角的定义.圆周角必须符合两个条件.8、B【分析】根据抛物线与轴的交点个数可对①进行判断;利用时函数值为负数可对②进行判断;由抛物线开口方向得,由抛物线的对称轴方程得到,由抛物线与轴交点位置得,于是可对③进行判断;由于时,,得到,然后把代入计算,则可对④进行判断;根据抛物线与轴的交点问题可对⑤进行判断.【详解】解:抛物线与轴有两个不同的交点,,∴,即①正确;时,,,∴,即②正确;抛物线开口向上,,抛物线的对称轴为直线,,抛物线与轴交点位于轴负半轴,,,所以③错误;,,,而,,所以④正确;抛物线与轴的交点坐标为、,即或3时,,方程的根是,,所以⑤正确.综上所述:正确结论有①②④⑤,正确结论有4个.故选:.【点睛】本题考查了二次函数与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小;一次项系数和二次项系数共同决定对称轴的位置;常数项决定抛物线与轴交点;抛物线与轴交点个数由△决定.9、C【分析】由,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】,,,,,,故选C.【点睛】本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键.10、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.【点睛】此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.12、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.13、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14、1【解析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:通过大量重复摸球试验后发现,摸到红球的频率是,口袋中有12个红球,设有x个白球,则,解得:,答:袋中大约有白球1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.15、y=(x+2)2-1【分析】根据函数图象的平移规律解答即可得到答案【详解】由题意得:平移后的函数解析式是,故答案为:.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.16、30cm.【分析】利用相似三角形的性质解决问题即可.【详解】,的周长:的周长=2:3的周长为20cm,的周长为30cm,故答案为:30cm.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.17、【分析】连接AB,从图中明确,然后根据公式计算即可.【详解】解:连接,∵,∴是直径,根据同弧对的圆周角相等得:,∵,∴,,即圆的半径为2,∴.故答案为:.【点睛】本题考查了同弧对的圆周角相等;90°的圆周角对的弦是直径;锐角三角函数的概念;圆、直角三角形的面积分式,解题的关键是熟练运用所学的知识进行解题.18、【解析】分析:根据锐角三角函数的定义,可得答案.详解:如图,由tanα==2,得a=2b,由勾股定理,得:c==b,sinα===.故答案为.点睛:本题考查了锐角三角函数,利用锐角三角函数的定义解题的关键.三、解答题(共66分)19、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).【分析】(1)根据一次函数图象上点的坐标特征求出点A的坐标,利用待定系数法求出k;

(2)先求出点D的坐标,求出∠ADB=45°,∠ODC=45°,从而得解;

(3)设出点E的坐标,根据三角形的面积公式解答.【详解】(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴﹣=1,∴点E的坐标为(﹣4,1).【点睛】本题考查的是反比例函数与几何的综合题,掌握待定系数法求反比例函数解析式是解题的关键.20、(1);(2)x1=3,x2=﹣2.【分析】(1)根据二次根式的运算法则,合并同类二次根式计算即可得答案;(2)把原方程整理为一元二次方程的一般形式,再利用十字相乘法解方程即可.【详解】(1)原式=.(2)x2-x-6=0(x﹣3)(x+2)=0解得:x1=3,x2=﹣2.【点睛】本题考查二次根式的运算及解一元二次方程,一元二次方程的常用解法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.21、(1)见解析;(2)【分析】(1)根据根的判别式判断即可△>1,有两个实数根;△=1,有一个实数根;△<1,无实数根.(2)根据求根公式求出两个根,根据一个根是正数判断k的取值范围即可.【详解】(1)证明:由题意,得∵,∴方程总有两个实数根.(2)解:由求根公式,得,.∵方程有一个根是正数,∴.∴.【点睛】此题主要考查了一元二次方程根的判别式及求根公式,熟记概念是解题的关键.22、(1);(2)点坐标为或【分析】(1)根据A、B、C三点坐标,运用待定系数法即可解答;(2)由的面积是面积的一半,则D点的纵坐标为-3,令y=3,求得x的值即为D点的纵坐标.【详解】解:设D的坐标为(x,yD)∵的面积是面积的一半∴,又∵点在轴下方,即.令y=-3,即解得:,,∴点坐标为或【点睛】本题主要考查了求二次函数解析式和三角形的面积,确定二次函数解析式并确定△ABD的高是解答本题的关键.23、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-【点睛】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.24、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论