2023届湖北省黄石市黄石十四中学教育集团八年级数学第一学期期末达标测试试题含解析_第1页
2023届湖北省黄石市黄石十四中学教育集团八年级数学第一学期期末达标测试试题含解析_第2页
2023届湖北省黄石市黄石十四中学教育集团八年级数学第一学期期末达标测试试题含解析_第3页
2023届湖北省黄石市黄石十四中学教育集团八年级数学第一学期期末达标测试试题含解析_第4页
2023届湖北省黄石市黄石十四中学教育集团八年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法错误的是()A.的平方根是B.是81的一个平方根C.的算术平方根是4D.2.在下列长度的各组线段中,能组成直角三角形的是()A.1,2,3 B.5,6,7 C.1,4,9 D.5,12,133.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=()A.40° B.50° C.60° D.70°4.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.5.如图,在中,AD是角平分线,于点E,的面积为28,,,则AC的长是A.8 B.6 C.5 D.46.若,则内应填的式子是()A. B. C.3 D.7.的相反数是()A. B. C. D.8.如图,,于,于,,则的值为()A. B. C. D.9.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.= B.=C.= D.=10.在,-1,,这四个数中,属于负无理数的是()A. B.-1 C. D.11.如果把分式中和都扩大10倍,那么分式的值()A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍12.不等式组的非负整数解的个数是()A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.若,则________.14.计算:(x+a)(y-b)=______________________15.若正比例函数y=kx的图象经过点(2,4),则k=_____.16.已知直角三角形的两边长分别为3、1.则第三边长为________.17.对于任意不相等的两个实数a,b(a>b)定义一种新运算a※b=,如3※2=,那么12※4=______18.计算____________.三、解答题(共78分)19.(8分)如图,矩形中,点是线段上一动点,为的中点,的延长线交BC于.(1)求证:;(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.20.(8分)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)21.(8分)如图1,公路上有三个车站,一辆汽车从站以速度匀速驶向站,到达站后不停留,以速度匀速驶向站,汽车行驶路程(千米)与行驶时间(小时)之间的函数图象如图2所示.(1)求与之间的函数关系式及自变量的取值范围.(2)汽车距离C站20千米时已行驶了多少时间?22.(10分)计算:(1)(x+3)(x﹣3)﹣x(x﹣2);(2)(﹣0.125)2018×(﹣2)2018×(﹣4)1.23.(10分)如图,点C,F,B,E在同一条直线上,AC⊥CE,DF⊥CE,垂足分别为C,F,且AB=DE,CF=BE.求证:∠A=∠D.24.(10分)先化简再求值:,其中25.(12分)某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若每月用水量超过10吨,则超过部分每吨按市场价元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.(1)求每吨水的优惠价和市场价分别是多少?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式.26.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“湘一四边形”.(1)已知:如图1,四边形是“湘一四边形”,,,.则,,若,,则(直接写答案)(2)已知:在“湘一四边形”中,,,,.求对角线的长(请画图求解),(3)如图(2)所示,在四边形中,若,当时,此时四边形是否是“湘一四边形”,若是,请说明理由:若不是,请进一步判断它的形状,并给出证明.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据平方根的性质,立方根的性质依次判断即可.【详解】的平方根是,故A正确;是81的一个平方根,故B正确;=4,算术平方根是2,故C错误;,故D正确,故选:C.【点睛】此题考查平方根与立方根的性质,熟记性质并熟练解题是关键.2、D【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为12+22≠32,所以不能组成直角三角形;

B、因为52+62≠72,所以不能组成直角三角形;

C、因为12+42≠92,所以不能组成直角三角形;

D、因为52+122=132,所以能组成直角三角形.

故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、B【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【详解】解:∵直尺对边互相平行,∴∠3=∠1=40°,∴∠2=180°−40°−90°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.4、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.5、B【解析】过点D作于F,根据角平分线的性质可得DF=DE,然后利用的面积公式列式计算即可得解.【详解】过点D作于F,是的角平分线,,,,解得,故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.6、A【分析】根据题意得出=,利用分式的性质求解即可.【详解】根据题意得出=故选:A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.7、B【分析】根据相反数的意义,可得答案.【详解】解:的相反数是-,故选B.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.8、B【分析】根据∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,求得∠ACD=∠CBE,利用角角边定理可证得△ACD≌△CBE,得出CE=AD,BE=CD=CE-DE,将已知数值代入求得BE的长,从而即可得出答案.【详解】解:∵BE⊥CE,AD⊥CE于D,

∴∠ADC=∠CEB=90°∴∠CBE+∠BCE=90°∵∠ACB=90°,∴∠ACD+∠BCE=90°,

∴∠ACD=∠CBE,

在△ACD与△CBE中,∴△ACD≌△CBE(AAS).

∴CE=AD=5cm,BE=DC

∴DC=CE-DE=5-3=2cm

∴BE=2cm.∴BE:CE=2:5∴BE:CE的值为故选:B【点睛】此题考查学生对等腰直角三角形和全等三角形的判定与性质的理解和掌握,关键是利用角角边定理可证得△ACD≌△CBE.9、C【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数,,,,满足,,,即,故A、B一定成立;设,∴,,∴,,∴,故D一定成立;若则,则需,∵、不一定相等,故不能得出,故D不一定成立.故选:.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.10、D【分析】根据小于零的无理数是负无理数,可得答案.【详解】解:是负无理数,

故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.11、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【点睛】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.12、B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【详解】解:∵解不等式①得:解不等式②得:x<5,∴不等式组的解集为∴不等式组的非负整数解为0,1,2,3,4,共5个,

故选:B.【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键.二、填空题(每题4分,共24分)13、【解析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.【详解】,,故2y=x,则,故答案为:.【点睛】本题考查了比例的性质,正确将原式变形是解题关键.14、xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)=xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.15、2【解析】16、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.17、【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4=故答案为:【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.18、【分析】根据,进行计算即可得到答案.【详解】====【点睛】本题考查了二次根式的乘除运算法则,注意最后结果化成最简二次根式,准确计算是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)PD=8-t,运动时间为秒时,四边形PBQD是菱形.【分析】(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.【详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O为BD的中点,∴OB=OD,在△POD与△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四边形PBQD是菱形,∴BP=PD=8-t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形.【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.20、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF+EF,∴BD+CE=DE;(3)BD﹣CE=DE.理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF﹣EF,∴BD﹣CE=DE.【点睛】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.21、(1)当0≤x≤3时y=100x;当3<x≤4时y=120x-60;(2)h.【分析】(1)根据函数图象设出一次函数解析式,运用待定系数法求出解析式即可;(2)由图可知,当汽车距离C站20千米时,y=400,代入解析式,求出时间即可.【详解】解:(1)由图像可知,第一段函数为正比例函数,设为,则把点(1,100)代入,解得:,∴,当y=300时,有,解得:;∴第一段函数解析式为:();设第二段函数为,把点(3,300)和(4,420)代入,得:,解得:,∴();(2)由图可知,当汽车距离C站20千米时,,∴,解得:,∴汽车距离C站20千米时已行驶了小时.【点睛】本题考查的是一次函数的应用,正确读懂函数图象、从中获取正确的信息、掌握待定系数法求函数解析式的步骤是解题的关键,解答时,注意方程思想的灵活运用.22、(1)2x﹣9;(2)﹣2.【分析】(1)原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果;(2)根据有理数的混合运算法则解答.【详解】(1)原式=x2﹣9﹣x2+2x=2x﹣9;(2)原式=[(﹣0.125)×(﹣2)×(﹣2)]2018•(﹣2)=(﹣1)2018•(﹣2)=﹣2.【点睛】此题主要考查了整式的混合运算,幂的乘方与积的乘方,熟记计算法则即可解题.23、详见解析【分析】证明Rt△ACB≌Rt△DFE(HL)可得结论.【详解】证明:∵AC⊥CE,DF⊥CE,∴∠C=∠DFE=90°,∵CF=BE,∴CB=FE,∵AB=DE,∴Rt△ACB≌Rt△DFE(HL),∴∠A=∠D.【点睛】本题考查三角形全等的判定,关键在于记住判定条件.24、,12.【分析】先利用完全平方公式、多项式乘法去括号,再通过合并同类项进行化简,最后将x和y的值代入即可.【详解】原式将代入得:原式.【点睛】本题考查了多项式的乘法、整式的加减(合并同类项),熟记运算法则和公式是解题关键.25、(1)每吨水的优惠价2元,市场价为3元;(2)当时,,当时,【分析】(1)设每吨水的优惠价为元,市场价为元,利用3月份及4月份的用水和水费的关系列方程组解答;(2)分两种情况列关系式:与时.【详解】(1)设每吨水的优惠价为元,市场价为元.,解得:,答:每吨水的优惠价2元,市场价为3元;(2)当时,,当时,.【点睛】此题考查二元一次方程组的实际应用,列一次函数解答实际问题,正确理解题意是解题的关键.26、(1)85°,115°,1;(2)AC的长为或;(1)四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形,理由见解析【分析】(1)连接BD,根据“湘一四边形”的定义求出∠B,∠C,利用等腰三角形的判定和性质证明BC=DC即可.

(2)分两种情形:①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E.②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,分别求解即可解决问题.

(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.如图2中,作CN⊥AD于N,AM⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论