版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.π B. C. D.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球3.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差4.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个5.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是()A. B. C. D.6.平面直角坐标系中,抛物线经变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移4个单位 D.向右平移4个单位7.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<58.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)9.下列二次根式中,与是同类二次根式的是A. B. C. D.10.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.7 B. C. D.11.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.12.某正多边形的一个外角的度数为60°,则这个正多边形的边数为()A.6 B.8 C.10 D.12二、填空题(每题4分,共24分)13.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.14.圆锥的母线长是5cm,底面半径长是3cm,它的侧面展开图的圆心角是____.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.16.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.17.如图,正五边形内接于,为上一点,连接,则的度数为__________.18.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.三、解答题(共78分)19.(8分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?20.(8分)已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.21.(8分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.22.(10分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.23.(10分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)24.(10分)如图,直线经过⊙上的点,直线与⊙交于点和点,与⊙交于点,连接,.已知,,,.(1)求证:直线是⊙的切线;(2)求的长.25.(12分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)写出D点坐标;(2)求双曲线的解析式;(3)作直线AC交y轴于点E,连结DE,求△CDE的面积.26.如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.2、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.3、D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.4、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【点睛】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.5、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x=﹣,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c<0,再结合B项的结论即可判断C项;由(1,0)与(﹣2,0)关于抛物线的对称轴对称,可知当x=-2时,y<0,进而可判断D项.【详解】解:A、∵抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,∴a>0,c<0,<0,∴b>0,∴abc<0,所以本选项错误;B、∵抛物线的对称轴为直线x=﹣,∴,∴a﹣b=0,所以本选项错误;C、∵当x=1时,a+b+c<0,且a=b,∴,所以本选项错误;D、∵(1,0)与(﹣2,0)关于抛物线的对称轴对称,且当x=1时,y<0,∴当x=-2时,y<0,即4a﹣2b+c<0,∴,所以本选项正确.故选:D.【点睛】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键.6、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:,顶点坐标是(-1,-4).
,顶点坐标是(1,-4).
所以将抛物线向右平移2个单位长度得到抛物线,
故选:B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律和变化特点.7、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.8、A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.9、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.10、C【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值为,∴点H的纵坐标a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴点H的横坐标b=,∴a+b=;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11、C【解析】如图,连接BP,由反比例函数的对称性质以及三角形中位线定理可得OQ=BP,再根据OQ的最大值从而可确定出BP长的最大值,由题意可知当BP过圆心C时,BP最长,过B作BD⊥x轴于D,继而根据正比例函数的性质以及勾股定理可求得点B坐标,再根据点B在反比例函数y=(k>0)的图象上,利用待定系数法即可求出k的值.【详解】如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(-)=,故选C.【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP过点C时OQ有最大值是解题的关键.12、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360,∴,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.二、填空题(每题4分,共24分)13、.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据,得出CG与DE的倍数关系,并根据进行计算即可.【详解】延长EF和BC交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E∴∴∴直角三角形ABE中,又∵∠BED的角平分线EF与DC交于点F∴∵∴∴∴由,,可得∴设,,则∴∴解得∴故答案为:.【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.14、216°.【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15、1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.16、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.17、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.18、【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.三、解答题(共78分)19、(1)20;(2)65,1.【分析】(1)每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数列方程,即可得到结论;
(2)设每件商品涨价m元,每星期该商品的利润为W,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x元,
根据题意得,(60-40+x)(300-10x)=4000,
解得:x1=20,x2=-10,(不合题意,舍去),
答:每件商品涨价20元时,每星期该商品的利润是4000元;
(2)设每件商品涨价m元,每星期该商品的利润为W,
∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1
∴当m=5时,W最大值.
∴60+5=65(元),
答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.20、(1)y=﹣x2+4x+5;(2)1.【分析】(1)由A、C、(1,8)三点在抛物线上,根据待定系数法即可求出抛物线的解析式;
(2)由B、C两点的坐标求得直线BC的解析式;过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=【详解】(1)∵A(﹣1,0),C(0,5),(1,8)三点在抛物线y=ax2+bx+c上,∴,解方程组,得,故抛物线的解析式为y=﹣x2+4x+5;(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,∴M(2,9),B(5,0),设直线BC的解析式为:y=kx+b,解得,则直线BC的解析式为:y=﹣x+5.过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=当x=2时,y=﹣2+5=3,则N(2,3),则MN=9﹣3=6,则【点睛】本题考查抛物线与x轴的交点和待定系数法求二次函数解析式,掌握待定系数法是解题的关键.21、(1)(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【详解】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为:(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=.【点睛】本题考查1、列表法与树状图法;2、概率公式,难度不大,掌握公式正确计算是解题关键.22、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.【详解】解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),∴,解得.∴抛物线的解析式为.(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得.∴直线AC的解析式为.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,).∵点P的横坐标为m,点P在抛物线上,∴点P的坐标为(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM为直角三角形.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.23、“大帆船”AB的长度约为94.8m【分析】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,得BF=AE=CE=(x+40)m,AE=x,列出方程,求出x的值,进而即可求解.【详解】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,易知四边形ABFE是矩形,∴AB=EF,AE=BF.∵∠DCA=∠ACB+∠BCD=18.5°+16.5°=45°,∴BF=AE=CE=(x+40)m.∵∠CDA=110°,∴∠ADE=60°.∴AE=x·tan60°=x,∴x=x+40,解得:x≈54.79(m).∴BF=CE=54.79+40=94.79(m).∴CF=≈189.58(m).∴EF=CF-CE=189.58-94.79≈94.8(m).∴AB=94.8(m).答:“大帆船”AB的长度约为94.8m.【点睛】本题主要考查三角函数的实际应用,添加辅助线,构造直角三角形,熟练掌握三角函数的定义,是解题的关键.24、(1)见解析;(2)【解析】(1)欲证明直线AB是O的切线,只要证明OC⊥AB即可.
(2)作ON
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 节文化课程中秋节课程设计
- 办证劳动合同范例
- 产品入驻超市的合同范本3篇
- 楼上责任合同范例
- 借款合同的解除协议违约责任3篇
- 付款补充合同要件3篇
- 合伙买车经营协议书范本3篇
- 农村药店采购合同范例
- 迷彩喷涂合同范例
- 续建合同范例
- 多媒体技术多媒体技术
- Y3150齿轮机床电气控制技术课程设计
- 人教版小学数学六年级上册第一单元测验双向细目表
- 部编本小学五年级上册语文期末考试(选择题)专项训练题及答案
- 化工生产车间人员配置方案(精编版)
- 读《让儿童在问题中学数学》有感范文三篇
- 陈述句改成双重否定句(课堂PPT)
- 人教版六年级数学上册总复习教案
- 自闭症儿童行为检核表学前版
- 鸿业市政管线排水设计步骤
- 最新原创医疗器械应急管理制度77
评论
0/150
提交评论