版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为克,再称得剩余电线的质量为克,那么原来这卷电线的总长度是()A.米 B.(+1)米 C.(+1)米 D.(+1)米2.一个长方形的周长为12cm,一边长为x(cm),则它的另一条边长y关于x的函数关系用图象表示为()A. B. C. D.3.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点4.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是25.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个6.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.7.一个多边形内角和是,则这个多边形的边数为()A. B. C. D.8.现有两根木棒长度分别是厘米和厘米,若再从下列木棒中选出一根与这两根组成一个三角形(根木棒首尾依次相接),应选的木棒长度为()A.厘米 B.厘米 C.厘米 D.厘米9.下列关于的叙述中,错误的是()A.面积为5的正方形边长是 B.5的平方根是C.在数轴上可以找到表示的点 D.的整数部分是210.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.11.一个三角形的两边长为3和9,第三边长为偶数,则第三边长为()A.6或8 B.8或10 C.8 D.1012.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=.14.如图,一次函数的图象经过和,则关于的不等式的解集为______.15.比较大小:_______3(填“˃”或“=”或“<”).16.4的算术平方根是.17.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为______.18.如图,在△ABC中,AB=AC,外角∠ACD=110°,则∠A=__________.三、解答题(共78分)19.(8分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.20.(8分)先化简,再求值:,其中a=﹣1.21.(8分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:BE=CF.22.(10分)如图,中,,,是上一点(不与重合),于,若是的中点,请判断的形状,并说明理由.23.(10分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=,BD=1.(1)求证:ΔBCD是直角三角形;(1)求△ABC的面积。24.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.25.(12分)(1)计算:(2)解不等式组:,并把不等式组的整数解写出来.26.(1)计算:;(2)计算:;(3)分解因式:;(4)解分式方程:.
参考答案一、选择题(每题4分,共48分)1、B【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【详解】剩余电线的长度为米,所以总长度为(+1)米.故选B2、B【解析】根据题意,可得y关于x的函数解析式和自变量的取值范围,进而可得到函数图像.【详解】由题意得:x+y=6,∴y=-x+6,∵,∴,∴y关于x的函数图象是一条线段(不包括端点),即B选项符合题意,故选B.【点睛】本题主要考查实际问题中的一次函数图象,根据题意,得到一次函数解析式和自变量的范围是解题的关键.3、B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.4、B【分析】根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题5、C【分析】根据“”可证明,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于与不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到,则利用平行线的判定方法可对③进行判断.【详解】解:是的中线,,,,,所以④正确;,所以①正确;与不能确定相等,和面积不一定相等,所以②错误;,,,所以③正确;故选:.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.6、D【解析】根据无理数的定义,分别判断,即可得到答案.【详解】解:是无理数;3.14,,0.57是有理数;故选:D.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7、C【分析】n边形的内角和为(n−2)180,由此列方程求n的值.【详解】设这个多边形的边数是n,则:(n−2)×180=720,解得n=6,故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8、B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.求出第三边的范围就可以求解.【详解】应选取的木棒的长的范围是:,
即.
满足条件的只有B.
故选:B.【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.9、B【分析】根据正方形面积计算方法对A进行判断;根据平方根的性质对B进行判断;根据数轴上的点与实数一一对应即可判断C;根据,可得出可判断出D是否正确.【详解】A.面积为5的正方形边长是,说法正确,故A不符合题意B.5的平方根是,故B错误,符合题意C.在数轴上可以找到表示的点,数轴上的点与实数一一对应,故C正确,不符合题意D.∵,∴,整数部分是2,故D正确,不符合题意故选:B【点睛】本题考查了正方形的性质、平方根的性质、数轴的特点、有理数的大小判断等知识.10、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.11、B【分析】根据三角形中两边之和大于第三边,两边之差小于第三边进行解答.【详解】解:设第三边长为x,有,解得,即;又因为第三边长为偶数,则第三边长为8或10;故选:B.【点睛】本题主要考查了三角形中的三边关系,掌握:两边之和大于第三边,两边之差小于第三边是解题的关键.12、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.二、填空题(每题4分,共24分)13、85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角.2、三角形内角和.14、x≥2【分析】根据一次函数的性质及与一元一次不等式的关系即可直接得出答案.【详解】∵一次函数图象经过一、三象限,∴y随x的增大而增大,∵一次函数y=kx+b的图象经过A(2,0)、B(0,﹣1)两点,∴x≥2时,y≥0,即kx+b≥0,故答案为:x≥2【点睛】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.15、<【分析】利用平方法即可比较.【详解】解:∵,,7<9,∴,故答案为:<.【点睛】本题主要考查了无理数的大小比较.掌握平方法比较实数大小的方式是解题关键.16、1.【解析】试题分析:∵,∴4算术平方根为1.故答案为1.考点:算术平方根.17、5【分析】找到点E关于AD的对称点E’,根据对称得BF+EF=BE’,利用等边三角形三线合一性质证明AD=BE’即可求出结果.【详解】如下图,作点E关于AD的对称点E’,∵△ABC是等边三角形,E为AB的中点,∴E’是线段AC的中点,∴AD垂直平分EE’,EF=E’F即BF+EF=BE’,又∵D是BC中点,∴AD=BE’=5(等边三角形三线相等),【点睛】本题考查了等边三角形三线合一性质,图形对称的实际应用,中等难度,证明BF+EF=AD是解题关键.18、40°【解析】由∠ACD=110,可知∠ACB=70;由AB=AC,可知∠B=∠ACB=70;利用三角形外角的性质可求出∠A.【详解】解:∵∠ACD=110,∴∠ACB=180-110=70;∵AB=AC,∴∠B=∠ACB=70;∴∠A=∠ACD-∠B=110-70=40.故答案为:40.【点睛】本题考查了等边对等角和三角形外角的性质.三、解答题(共78分)19、(1)①③;(2)【分析】(1)根据对称式的定义进行判断;(2)由可知,再根据对称式的定义判断即可;当时,,代入求解即可.【详解】(1)①③;(2)∵∴,∴的表达式都是对称式;当时,,∴,∴.【点睛】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义.20、;【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=,当a=﹣1时,原式=﹣.【点睛】本题主要考查了分式的混合运算,灵活的利用通分、约分进行分式的化简是解题的关键.21、见解析【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质得到∠FCD=∠EBD,∠DFC=∠DEB,推出△CDF≌△BDE,就可以得出BE=CF.【详解】∵AD是△ABC的中线,∴BD=CD,∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB,在△CDF和△BDE中,,∴△CDF≌△BDE(AAS),∴BE=CF.【点睛】本题考查了全等三角形的判定及性质、平行线的性质等知识,解答时证明三角形全等是关键.22、的形状为等边三角形,理由见解析.【分析】由直角三角形的性质得:,,,,结合,即可得到结论.【详解】∵在中,,是斜边的中点,∴,∴,同理,在中,,,∴,即是等腰三角形,∴,∴是等边三角形.【点睛】本题主要考查等边三角形的判定定理,直角三角形的性质定理,掌握“直角三角形斜边上的中线等于斜边的一半,是解题的关键.”23、(1)见解析;(1);【分析】(1)根据勾股定理的逆定理直接得出结论;
(1)设腰长为x,在直角三角形ADB中,利用勾股定理列出x的方程,求出x的值,进而利用三角形的面积公式求出答案.【详解】解:(1)∵CD=1,BC=,BD=1,
∴CD1+BD1=BC1,
∴△BDC是直角三角形;
(1)设腰长AB=AC=x,
在Rt△ADB中,
∵AB1=AD1+BD1,
∴x1=(x-1)1+11,
解得x=,
即△ABC的面积=AC•BD=××1=.【点睛】本题主要考查了勾股定理和其逆定理以及等腰三角形的性质,解题关键是利用勾股定理构造方程求出腰长.24、(1)(m+2n)(2m+n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)求出m+n的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为(m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市综合体物业管理服务合同范本3篇
- 2024年度城市社区公共卫生服务合作框架协议3篇
- 2024年度债转股合同复杂多条款与债务重组策略及债务减免3篇
- 2024年二零二四年度化妆品外贸采购合同范本9篇
- 2024年度政府采购代理服务合同-医疗卫生设备采购项目3篇
- 2024年度中小企业行政人事劳动合同模板3篇
- 2024年度农业贷款反担保协议担保合同范本3篇
- 2024年度第三方担保合同范本(含担保期限和条件)3篇
- 2024年度双方二手住宅买卖合同范本3篇
- 《于细微处见精神》课件
- GB/T 25356-2024机场道面除冰防冰液
- 研究生考试考研法律硕士专业基础(法学)2025年试题及解答
- 部编版道德与法治九年级上册每课教学反思
- 2024年全国高中数学联赛北京赛区预赛一试试题(解析版)
- 2024重庆艺术统考美术专业一分一段表
- 绿化养护服务投标方案(技术标)
- 跨境电商公共服务平台项目招标文件
- 河北省保定市2023-2024学年三年级上学期期末考试数学试卷
- 煤炭托盘合作协议书
- 2024年中国主轴产业深度分析、投资前景及发展趋势预测(简版报告)
- 房地产公司总经理职位面试问题
评论
0/150
提交评论