2022年广东省佛山市南海区狮山镇数学九年级第一学期期末达标检测试题含解析_第1页
2022年广东省佛山市南海区狮山镇数学九年级第一学期期末达标检测试题含解析_第2页
2022年广东省佛山市南海区狮山镇数学九年级第一学期期末达标检测试题含解析_第3页
2022年广东省佛山市南海区狮山镇数学九年级第一学期期末达标检测试题含解析_第4页
2022年广东省佛山市南海区狮山镇数学九年级第一学期期末达标检测试题含解析_第5页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个2.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m3.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.4.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段 B.三角形 C.平行四边形 D.正方形5.如图,在△ABC中,∠ACB=90°,AC=3,BC=1.将△ABC绕点A逆时针旋转,使点C的对应点C'在线段AB上.点B'是点B的对应点,连接B'B,则线段B'B的长为()A.2 B.3 C.1 D.6.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或7.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°8.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.9.如图,重庆欢乐谷的摩天轮是西南地区最高的摩天轮,号称“重庆之限”.摩天轮是一个圆形,直径AB垂直水平地面于点C,最低点B离地面的距离BC为1.6米.某天,妈妈带着洋洋来坐摩天轮,当她站在点D仰着头看见摩天轮的圆心时,仰角为37º,为了选择更佳角度为洋洋拍照,妈妈后退了49米到达点D’,当洋洋坐的桥厢F与圆心O在同一水平线时,他俯头看见妈妈的眼睛,此时俯角为42º,已知妈妈的眼睛到地面的距离为1.6米,妈妈两次所处的位置与摩天轮在同一平面上,则该摩天轮最高点A离地面的距离AC约是()(参考数据:sin37º≈0.60,tan37º≈0.75,sin42º≈0.67,tan42º≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米10.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将放在边长为1的小正方形组成的网格中,若点A,O,B都在格点上,则___________________.12.方程2x2﹣6=0的解是_____.13.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.14.如图,抛物线与直线的两个交点坐标分别为,则关于x的方程的解为________.15.___________.16.小丽生日那天要照全家福,她和爸爸、妈妈随意排成一排,则小丽站在中间的概率是________.17.抛物线y=x2–6x+5的顶点坐标为__________.18.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.三、解答题(共66分)19.(10分)某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个.假设每个降价x(元)时,每天获得的利润为W(元).则降价多少元时,每天获得的利润最大?20.(6分)小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.他们在一次实验中共掷骰子次,试验的结果如下:朝上的点数出现的次数

①填空:此次实验中“点朝上”的频率为________;②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.21.(6分)先化简,再求值:(1+),其中,x=﹣1.22.(8分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C.抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.(1)求抛物线的解析式和对称轴;(1)求∠DAO的度数和△PCO的面积;(3)在图1中,连接PA,点Q是PA的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究:是否存在点P,使得,若存在,请求点P的坐标;若不存在,请说明理由.23.(8分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)24.(8分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.25.(10分)如图,己知抛物线的图象与轴的一个交点为另一个交点为,且与轴交于点(1)求直线与抛物线的解析式;(2)若点是抛物线在轴下方图象上的-一动点,过点作轴交直线于点,当的值最大时,求的周长.26.(10分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.2、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴,即,解得BD=6m.故选A.【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.3、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【详解】解:∵∠A=60°,AB=AD,

∴△ABD为等边三角形,

∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,

∴∠CBD=30°,而CB=CD,

∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,

∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,

∴下面圆锥的侧面积=.

故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.4、B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.5、D【分析】先由勾股定理求出AB,然后由旋转的性质,得到,,得到,即可求出.【详解】解:在△ABC中,∠ACB=90°,AC=3,BC=1.∴,由旋转的性质,得,,,∴,在中,由勾股定理,得;故选:D.【点睛】本题考查了旋转的性质,勾股定理解直角三角形,解题的关键是熟练掌握旋转的性质和勾股定理,正确求出边的长度.6、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.7、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.8、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9、B【分析】连接EB,根据已知条件得到E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,求得BH=FH=OB,设AO=OB=r,解直角三角形即可得到结论.【详解】解:连接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,∴BH=FH=OB,设AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故选:B.【点睛】本题考查了解直角三角形——仰角与俯角问题,正方形的判定和性质,正确的作出辅助线是解题的关键.10、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.二、填空题(每小题3分,共24分)11、2【分析】利用网格特征,将∠AOB放到Rt△AOD中,根据正切函数的定理即可求出tan∠AOB的值.【详解】如图,将∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案为:2.【点睛】本题考查在网格图中求正切值,利用网格的特征将将∠AOB放到直角三角形中是解题的关键.12、x1=,x2=﹣【解析】此题通过移项,然后利用直接开平方法解方程即可.【详解】方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣【点睛】此题主要考查了一元二次方程的解法—直接开平方法,比较简单.13、1【分析】根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.【详解】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.14、【详解】∵抛物线与直线的两个交点坐标分别为,∴方程组的解为,,即关于x的方程的解为.15、【分析】直接代入特殊角的三角函数值进行计算即可.【详解】原式.故答数为:.【点睛】本题考查了特殊角的三角函数值及实数的运算,熟记特殊角的三角函数值是解题的关键.16、【分析】先利用树状图展示所有6种等可能的结果数,再找出小丽恰好排在中间的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有种等可能的结果数,其中小丽站在中间的结果数为,所以小丽站在中间的概率.故答案为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17、(3,-4)【解析】分析:利用配方法得出二次函数顶点式形式,即可得出二次函数顶点坐标.详解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线顶点坐标为(3,﹣4).故答案为(3,﹣4).点睛:此题考查了二次函数的性质,求抛物线的顶点坐标可以先配方化为顶点式,也可以利用顶点坐标公式()来找抛物线的顶点坐标.18、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.三、解答题(共66分)19、降价2.5元时,每天获得的利润最大.【分析】根据题意列函数关系式,然后根据二次函数的性质即可得到结论.【详解】解:由题意得:W=(55﹣30﹣x)•(200+10x),=﹣10x2+50x+5000,=,二次函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大,最大利润为5062.5元.答:降价2.5元时,每天获得的利润最大.【点睛】本题主要考查了二次函数的性质在实际生活中的应用,解决本题的关键是要熟练掌握商品销售利润问题中等量关系.20、(1)①;②说法是错误的.理由见解析;(2).【解析】(1)①让5出现的次数除以总次数即为所求的频率;②根据概率的意义,需要大量实验才行;

(2)列举出所有情况,比较两枚骰子朝上的点数之和的情况数,进而让最多的情况数除以所有情况数的即可.【详解】解:①;

②说法是错误的.在这次试验中,“点朝上”的频率最大并不能说明“点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率.

由表格可以看出,总情况数有种,之和为的情况数最多,为种,所以(点数之和为).【点睛】考查用列表格的方法解决概率问题及概率的意义;用到的知识点为:概率是大量实验下一个稳定的值;数学中概率等于所求情况数与总情况数之比.21、,1﹣【分析】根据分式混合运算的运算顺序及运算法则进行化简,再把x的值代入计算即可.【详解】解:原式,当时,原式.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式通分和分式加减乘除运算法则.22、(1);;(1)45°;;(3)存在,【分析】(1)把C点坐标代入解出解析式,再根据对称轴即可解出.(1)把A、D、E、C点坐标求出后,因为AE=DE,且DE⊥AE,所以∠DAO=,P点y轴的距离等于OE,即可算出△POC的面积.(3)设出PE=m,根据勾股定理用m表示出PA,根据直角三角形斜边中线是斜边的一半可以证明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因为∠DAO=,再根据角的关系可以证明△FEQ是等腰直角三角形,再根据,解出m即可.可以通过圆的性质,来判断△FEQ是等腰直角三角形,再根据建立等式算出m即可.【详解】解:(1)将C代入求得a=,∴抛物线的解析式为;由可求抛物线的对称轴为直线(1)由抛物线可求一些点的坐标:∴AE=DE=3,又DE⊥AE∴△ADE是等腰直角三角形∴∠DAO=45°作PM⊥y轴于M,在对称轴上的点P的横坐标为-1,∴PM=1,又OP=∴△OPC的面积为(3)解:存在点满足题目条件.解法一:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∵QE=AQ,QF=AQ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ∴∠EQP=1∠EAQ,∠FQP=1∠FAQ∴∠EQF=1(∠EAQ+∠FAQ)=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为解法二:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∴四边形PEAF内接于半径为QE的⊙Q,∴∠EQF=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为【点睛】本题考查了用待定系数法求一元二次函数解析式,对称轴,直角三角形的性质,及一元二次函数与三角形综合点存在性的问题,熟练运用相关知识点是解本题的关键.23、(1)35+;(2)坐板EF的宽度为()cm.【分析】(1)如图,构造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距离即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ=FH=20cm解三角形即可求解.【详解】解:(1)如图2,过C作CM⊥AB,垂足为M,又过D作DN⊥AB,垂足为N,过C作CG⊥DN,垂足为G,则∠DCG=60°,∵AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,∴∠A=∠B=30°,则在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CDsin∠DCG=50sin60°==,又GN=CM=30cm,前后车轮半径均为5cm,∴扶手前端D到地面的距离为DG+GN+5=+30+5=35+(cm).(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支点H到点C的距离为10cm,DF=20cm,∴FH=20cm,如图2,过E作EQ⊥FH,垂足为Q,设FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=,∴EF=2()=.答:坐板EF的宽度为()cm.【点睛】本题考查了解直角三角形的应用,解题的难点在于从实际问题中抽象出数学基本图形构造适当的直角三角形,难度较大.24、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点的坐标为(,)②△BPA∽△BAC,如图,由前面获得的数据:AB,,∵△BPA∽△BAC,∴,∴,∴,过点P作PE∥y轴交轴于E,∴,∴,∴,,∴,P点的坐标为(,);(3)存在.当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).理由如下:如图:设直线AC的解析式为:,

∴,解得:,∴直线AC的解析式为:,过点D作DE⊥x轴于点E,

∵∠CBO+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论