版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗2.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.3.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.4.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.5.在Rt△ABC中,∠C=90°,若,则的值为()A.1 B. C. D.6.如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.7.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点()A.在圆上 B.在圆内 C.在圆外 D.在圆上或在圆内9.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y210.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.11.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1 B.2 C.3 D.412.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45° B.60° C.72° D.90°二、填空题(每题4分,共24分)13.半径为5的圆内接正六边形的边心距为__________.14.写出一个你认为的必然事件_________.15.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.16.如图所示是二次函数的图象,下列结论:①二次三项式的最大值为;使成立的的取值范围是;一元二次方程,当时,方程总有两个不相等的实数根;该抛物线的对称轴是直线;其中正确的结论有______________(把所有正确结论的序号都填在横线上)17.如图,△ABC是⊙O的内接三角形,∠A=120°,过点C的圆的切线交BO于点P,则∠P的度数为_____.18.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.三、解答题(共78分)19.(8分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?20.(8分)已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)若DF∥AB,则BD与CD有怎样的数量关系?并证明你的结论.21.(8分)计算题:(1)计算:sin45°+cos230°•tan60°﹣tan45°;(2)已知是锐角,,求.22.(10分)(1)解方程:(配方法)(2)已知二次函数:与轴只有一个交点,求此交点坐标.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣4,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1,并写出C1的坐标;(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1.24.(10分)(1)若正整数、,满足,求、的值;(2)已知如图,在中,,,点在边上移动(不与点,点重合),将沿着直线翻折,点落在射线上点处,当为一个含内角的直角三角形时,试求的长度.25.(12分)如图,在平面直角坐标系中,抛物线行经过点和点,交轴正半轴于点,连接,点是线段上动点(不与点重合),以为边在轴上方作正方形,接,将线段绕点逆时针旋转90°,得到线段,过点作轴,交抛物线于点,设点.(1)求抛物线的解析式;(2)若与相似求的值;(3)当时,求点的坐标.26.如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.(1)求证:;(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;(3)连接BH,当点E运动到AD的何位置时有?
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:由题意得,解得:.故选B.2、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.3、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.4、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.5、B【分析】根据互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα解答即可.【详解】解:解:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴sinA=cosB=,
故选:B.【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时,sinA=cosB是解题的关键.6、B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到•5t•5t﹣•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴•5t•5t﹣•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.7、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.8、B【分析】由题意根据圆的半径和线段的长进行大小比较,即可得出选项.【详解】解:因为圆的半径为5,线段的长为4,5>4,所以点在圆内.故选B.【点睛】本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.9、C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.10、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.11、C【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】有三个①∠ABC=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选C【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题的关键12、B【分析】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.
故选B.【点睛】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【详解】如图,连接OA、OB,作OH⊥AB,∵六边形ABCDEF是圆内接正六边形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等边三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案为:.【点睛】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.14、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.15、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【点睛】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.16、①③④【分析】根据图象求出二次函数的解析式,根据二次函数的性质结合图象可以判断各个小题中的结论是否正确.【详解】由函数图象可知:抛物线过(-3,0),(1,0),(0,3),∴设抛物线解析式为,把(0,3)代入得:3=,解得:a=-1,∴抛物线为,即,∴二次三项式ax2+bx+c的最大值为4,故①正确,由=3,解得:x=0或x=-2,由图像可知:使y≤3成立的x的取值范围是x≤﹣2或x≥0,故②错误.∵二次三项式ax2+bx+c的最大值为4,∴当k<4时,直线y=k与抛物线有两个交点,∴当k<4时,方程一元二次方程总有两个不相等的实数根,故③正确,该抛物线的对称轴是直线x=﹣1,故④正确,当x=﹣2时,y=4a﹣2b+c>0,故⑤错误.故答案为:①③④.【点睛】本题考查了二次函数图象与系数的关系、二次函数的最值、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.17、30°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°−∠A=60°,由等腰三角形的性质得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性质即可得出结果.【详解】如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°−∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°−2×60°=60°,∴∠P=90°−∠DOC=30°;故填:30°.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.18、.【解析】直接利用概率公式求解可得.【详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【点睛】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.三、解答题(共78分)19、(1);(2);(3)步数之差最多是厘米,【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当时的函数值;(3)先求得当时的函数值,再判断当时的函数值的范围.【详解】(1)设反比例函数解析式为,将,代入解析式得:,解得:,反比例函数解析式为;(2)将代入得;(3)反比例函数,在每一象限随增大而减小,当时,,解得:,当时,,步数之差最多是厘米.【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确解答本题的关键.20、(1)见解析;(2)BD=2CD证明见解析【分析】(1)连接OD.根据圆的半径都相等的性质及等边对等角的性质知:∠OAD=∠ODA;再由切线的性质及平行线的判定与性质证明∠OAD=∠CAD;(2)连接OF,根据等腰三角形的性质以及圆周角定理证得∠BAC=60°,根据平行线的性质得出BD:CD=AF:CF,∠DFC=∠BAC=60°,根据解直角三角形即可求得结论.【详解】(1)证明:连接OD,∴OD=OA,∴∠OAD=∠ODA,∵BC为⊙O的切线,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)连接OF,∵DF∥AB,∴∠OAD=∠ADF,∵AD平分∠BAC,∴∠ADF=∠OAF,∵∠ADF=∠AOF,∴∠AOF=∠OAF,∵OA=OF,∴∠OAF=∠OFA,∴△AOF是等边三角形,∴∠BAC=60°,∵∠ADF=∠DAF,∴DF=AF,∵DF∥AB,∴BD:CD=AF:CF,∠DFC=∠BAC=60°,∴=2,∴BD=2CD.【点睛】本题考查了切线的性质,涉及知识点有:平行线的判定与性质、等边三角形的性质、等腰三角形的性质以及圆周角定理,数形结合做出辅助线是解本题的关键21、(1);(2)1﹣【分析】(1)代入特殊锐角的三角函数值进行实数的运算便可;(2)由已知求出α的度数,再代入计算便可.【详解】解:原式(2)∵∴,∴∴,原式【点睛】本题考查的是利用特殊角的三角函数值进行运算,熟记特殊角的三角函数值是解题关键.22、(1)(2),交点坐标为【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:再利用求解的值,最后求解交点的坐标即可.【详解】解:(1),(2)二次函数:与轴只有一个交点,这个交点为抛物线的顶点,顶点坐标为:即此交点的坐标为:【点睛】本题考查了解一元二次方程的配方法,二次函数与轴的交点坐标问题,掌握相关知识是解题的关键.23、(1)见解析,(1,3);(1)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(1)分别作出点A、B绕C点顺时针旋转90°后得到的对应点,再首尾顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,3);(1)如图所示,△A1B1C1即为所求.【点睛】本题主要考查作图-旋转变换和轴对称变换,解题的关键是掌握旋转变换和轴对称变换的定义与性质,并据此得出变换后的对应点.24、(1)或;(2)或.【分析】(1)根据平方差公式因式分解,根据题意可得或;(2)根据翻折性质可证∠AEF=180°∠BEF=90°,分两种情况:①如图a,当∠EAF=30°时,设BD=x,根据勾股定理,即;②如图b,当∠AFE=30°时,设BD=x,根据勾股定理,,;【详解】(1)解:∵>0,且x,y均为正整数,∴与均为正整数,且>,与奇偶性相同.又∵∴或解得:或.(2)解:∵∠ACB=90°,AC=BC∴∠B=∠BAC=45°又∵将△BDE沿着直线DE翻折,点B落在射线BC上点F处∴∠BDE=∠EDF=90°,且△BDE≌△FDE∴∠BED=∠DEF=45°,∠BEF=90°,BE=EF∴∠AEF=180°∠BEF=90°①如图a,当∠EAF=30°时,设BD=x,则:BD=DF=DE=x,,,∵∠EAF=30°,∴AF=,在Rt△AEF中,,∴,解得.∴.②如图b,当∠AFE=30°时,设BD=x,则:同理①可得:,∵∠AFE=30°,∴AF=在Rt△AEF中,,∴,解得.∴.综上所述,或.【点睛】考核知识点:因式分解运用,轴对称,勾股定理.分析翻折过程,分类讨论情况是关键;运用因式分解降次是要点.25、(1)y=-x2+3x+4;(2)a=或;(3)点P的坐标为(1,4)或(2,4)或(,4)【分析】(1)点C(0,4),则c=4,二次函数表达式为:y=-x2+bx+4,将点A的坐标代入上式,即可求解;
(2)△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FEB=或4,即可求解;
(3)证明△PNF≌△BEF(AAS),PH=2,则-4a2+6a+4-4=|2|,即可求解.【详解】解:(1)将点A和点C的坐标代入上式得:0=-1-b+4,解得:b=3,故抛物线的表达式为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机在工程测量中的应用
- 石河子大学《网页设计与制作》2023-2024学年期末试卷
- 石河子大学《软件项目管理》2023-2024学年期末试卷
- 石河子大学《混凝土结构原理道桥方向》2023-2024学年第一学期期末试卷
- 石河子大学《电路(二)》2023-2024学年期末试卷
- 沈阳理工大学《中国文化概论》2022-2023学年第一学期期末试卷
- 沈阳理工大学《现代设计方法》2022-2023学年第一学期期末试卷
- 沈阳理工大学《嵌入式系统与Ke》2023-2024学年第一学期期末试卷
- 沈阳理工大学《计算机网络基础》2021-2022学年期末试卷
- 沈阳理工大学《功能型交互设计》2023-2024学年第一学期期末试卷
- 关于进一步加强路基路面施工质量的通知
- 部编人教版道德与法治五年级上册全册课件设计
- 人教版数学五年级上册《实际问题与方程(例3)》说课稿
- -投标技术标书范文模板-人员配备与团队构建
- 四害消杀服务合同协议(2024版)
- 中国特色社会主义思想小学高年级学生读本全一册教学设计(共14讲;定稿)
- 重大事故隐患判定标准培训记录、培训效果评估
- 邮政末端投递模式的优化与创新
- 心理学:学前儿童发展心理学试题预测
- 8队淘汰赛-对阵表
- 机器学习(山东联盟)智慧树知到期末考试答案章节答案2024年山东财经大学
评论
0/150
提交评论