版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D.42.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(
)A.2 B.1 C.32-3.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.14.已知Rt△ABC中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是()A.sinA= B.cosA= C.tanA= D.tanB=5.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和16.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣7.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积()A.增大 B.减小 C.先减小后增大 D.先增大后减小8.如图,已知,分别为正方形的边,的中点,与交于点,为的中点,则下列结论:①,②,③,④.其中正确结论的有()A.个 B.个 C.个 D.个9.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于()A. B. C. D.10.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.611.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.12.已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定二、填空题(每题4分,共24分)13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.14.如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为__________.15.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.16.如图,在中,,点是边的中点,,则的值为___________.17.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.18.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.三、解答题(共78分)19.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.20.(8分)如图,矩形ABCD的四个顶点在正三角形EFG的边上.已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.21.(8分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC22.(10分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?23.(10分)用适当方法解下列方程.(1)(2)24.(10分)如图,在平面直角坐标系中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1).(1)把平移后,其中点移到点,面出平移后得到的;(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和).25.(12分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.26.如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点:1.旋转;2.勾股定理.2、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.3、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.4、D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此选项错误;B、cosA=,故此选项错误;C、tanA=,故此选项错误;D、tanB=,故此选项正确.故选:D.
【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.5、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.6、C【详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.7、A【分析】首先利用a和b表示出AC和CQ的长,则四边形ACQE的面积即可利用a、b表示,然后根据函数的性质判断.【详解】解:AC=a−2,CQ=b,则S四边形ACQE=AC•CQ=(a−2)b=ab−2b.∵、在函数的图象上,∴ab=k=10(常数).∴S四边形ACQE=AC•CQ=10−2b,∵当a>2时,b随a的增大而减小,∴S四边形ACQE=10−2b随a的增大而增大.故选:A.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用b表示出四边形ACQE的面积是关键.8、B【分析】根据正方形的性质可得,然后利用SAS即可证出,根据全等三角形的性质可得:,根据直角三角形的性质和三角形的内角和,即可判断①;根据中线的定义即可判断②;设正方形的边长为,根据相似三角形的判定证出,列出比例式,即可判断③;过点作于,易证△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判断④.【详解】解:在正方形中,,,、分别为边,的中点,,在和中,,,,,,故①正确;是的中线,,,故②错误;设正方形的边长为,则,在中,,,,,,即,解得:,,,故③正确;如图,过点作于,∴∴△AMN∽△AFB∴,即,解得,,根据勾股定理,,,,故④正确.综上所述,正确的结论有①③④共3个故选:B.【点睛】此题考查的是正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.9、A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.∴,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.10、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.11、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【点睛】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.12、C【分析】由反比例函数的增减性得到k>0,表示出方程根的判别式,判断根的判别式的正负即可得到方程解的情况.【详解】∵反比例函数y,当x>0时,y随x的增大而减小,∴k>0,∴方程中,△==8k+8>0,∴方程有两个不相等的实数根.故选C.【点睛】本题考查了根的判别式,以及反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键.二、填空题(每题4分,共24分)13、【详解】∵AB∥CD∥EF,∴,故答案为.14、6【分析】根据AB//CD,得出△AOB与△OCD相似,利用△AOB与△OCD的面积分别为8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)进行解答即可.【详解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD与△ACD的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)则OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,点E在第三象限∴k=xy=a×b=6故答案为6.【点睛】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.15、8【分析】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【详解】连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm.∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm.在Rt△AOD中,∵mm,∴AB=2AD=2×4=8mm【点睛】本题是典型的几何联系实际应用题,熟练运用垂径定理是解题的关键.16、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.17、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质18、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【详解】解:过C作CD⊥AB于D点,由题意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.
故答案为:(30+30).【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.三、解答题(共78分)19、(1)画图见解析,A1(﹣1,4),B1(1,4);(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.【详解】解:(1)所求作△A1B1C如图所示:由A(4,1)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×1×2=+1.【点睛】本题考查作图-旋转变换;扇形面积的计算.20、(1);(2)【分析】(1)根据矩形的性质得到,CD=AB,CD∥AB,由平行可以得到△CDE也为正三角形,所以DE=CD=x,DF=2-x.根据等边三角形的性质得到∠F=60°,得AD=,再根据矩形的面积公式即可得到结论;
(2)根据二次函数的性质即可得到结论.【详解】解:四边形ABCD为矩形,∴CD=AB,CD∥AB,又△EFG为正三角形,∴△CDE也为正三角形.∴DE=CD=x,∴DF=2-x.又在正三角形EFG中,可得∠F=60°,∴AD==,∴S=AB·AD=x·=(2)由,∴当x=1时,S取得最大值,最大值为【点睛】本题考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,二次函数的性质,正确的理解题意是解题的关键.21、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.22、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(20,40),C(50,70),设BC的解析式为y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直线BC的解析式为:y=x+20,当x=40时,y=60,即第40天时该产品的成本是60元/件,利润为:80-60=20(元/件)此时的产量为z=40+10=50件,则第40天的利润为:20×50=1000元故答案为:1000(2)①当时,,∴时,元;当时,,∴时,元;综上所述,当时,元②当时,若元,则(天),第15天至第20天的利润都不低于1000元;当时,若元,则(舍去)(天),所以第21天至第40天的利润都不低于1000元,则总共有1天的利润不低于1000元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机在工程测量中的应用
- 石河子大学《网页设计与制作》2023-2024学年期末试卷
- 石河子大学《软件项目管理》2023-2024学年期末试卷
- 石河子大学《混凝土结构原理道桥方向》2023-2024学年第一学期期末试卷
- 石河子大学《电路(二)》2023-2024学年期末试卷
- 沈阳理工大学《中国文化概论》2022-2023学年第一学期期末试卷
- 沈阳理工大学《现代设计方法》2022-2023学年第一学期期末试卷
- 沈阳理工大学《嵌入式系统与Ke》2023-2024学年第一学期期末试卷
- 沈阳理工大学《计算机网络基础》2021-2022学年期末试卷
- 沈阳理工大学《功能型交互设计》2023-2024学年第一学期期末试卷
- 一次性付款房屋买卖合同
- 组织行为学案例分析 组织行为学案例分析
- 重大事故隐患数据表
- 供应链管理(第3版)高职PPT完整全套教学课件
- 急性扁桃体炎病人的护理
- 清淤、清表施工方案
- 2023上海外国语大学三亚附属中学第一次招聘19人笔试备考题库及答案解析
- 悦纳儿童的文化生长东莞市莞城中心小学“悦纳教育”的思与行
- 2022年春期2064国开电大专科《管理学基础》纸质形成性考核册答案
- 机械加工初步报价自动计算(含各种工时费)
- 碳酸氢镁介稳溶液应用于萃取分离稀土过程中的基础研究
评论
0/150
提交评论