2022年四川省平昌县数学八年级上册期末考试模拟试题含解析_第1页
2022年四川省平昌县数学八年级上册期末考试模拟试题含解析_第2页
2022年四川省平昌县数学八年级上册期末考试模拟试题含解析_第3页
2022年四川省平昌县数学八年级上册期末考试模拟试题含解析_第4页
2022年四川省平昌县数学八年级上册期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列分式中,最简分式是()A. B. C. D.2.三角形的三边长可以是()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,133.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF4.2-3的倒数是()A.8 B.-8 C. D.-5.下列命题是真命题的是()A.如果,那么B.三个内角分别对应相等的两个三角形相等C.两边一角对应相等的两个三角形全等D.如果是有理数,那么是实数6.下列命题是真命题的是()A.和是180°的两个角是邻补角;B.经过一点有且只有一条直线与已知直线平行;C.两点之间垂线段最短;D.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A.4.7 B.5.0 C.5.4 D.5.89.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)10.下列三角形,不一定是等边三角形的是A.有两个角等于60°的三角形 B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形 D.边上的高也是这边的中线的三角形二、填空题(每小题3分,共24分)11.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.12.在函数y=中,自变量x的取值范围是_____.13.数0.0000046用科学记数法表示为:__________.14.若分式有意义,则__________.15.如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=______.16.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是______cm.17.如图,数轴上点A、B对应的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径作圆弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,当点M在点B的右侧时,点M对应的数是_____.18.计算=.三、解答题(共66分)19.(10分)已知,求代数式的值20.(6分)计算:(1)18x3yz•(﹣y2z)3÷x2y2z(2)÷21.(6分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?22.(8分)如图,三个顶点的坐标分别为、、.(1)若与关于y轴成轴对称,则三个顶点坐标分别为_________,____________,____________;(2)若P为x轴上一点,则的最小值为____________;(3)计算的面积.23.(8分)如图,在中,是的平分线,于,于,试猜想与之间有什么关系?并证明你的猜想.24.(8分)如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使PA+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.25.(10分)计算:(1)(2)(3)已知:,求.26.(10分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.2、D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.3、B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4、A【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【详解】2-3==,则2-3的倒数是8,故选:A.【点睛】本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.5、D【分析】根据绝对值的意义、全等三角形的判定、实数的分类等知识对各选项逐一进行判断即可.【详解】A.如果,那么,故A选项错误;B.三个内角分别对应相等的两个三角形不一定全等,故B选项错误;C.两边一角对应相等的两个三角形不一定全等,当满足SAS时全等,当SSA时不全等,故C选项错误;D.如果是有理数,那么是实数,正确,故选D.【点睛】本题考查了真假命题的判断,涉及了绝对值、全等三角形的判定、实数等知识,熟练掌握和灵活运用相关知识是解题的关键.6、D【分析】由邻补角的定义判断由过直线外一点作已知直线的平行线判断,两点之间的距离判断,由点到直线的距离判断从而可得答案.【详解】解:邻补角:有公共的顶点,一条公共边,另一边互为反向延长线,所以:和是180°的两个角是邻补角错误;故错误;经过直线外一点有且只有一条直线与已知直线平行;故错误;两点之间,线段最短;故错误;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;正确,故正确;故选:【点睛】本题考查的是命题的真假判断,同时考查邻补角的定义,作平行线,两点之间的距离,点到直线的距离,掌握以上知识是解题的关键.7、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.8、B【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.9、A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).

故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.10、D【分析】分别利用等边三角形的判定方法分析得出即可.【详解】A.根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B.有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C.三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D.边上的高也是这边的中线的三角形,也可能是等腰三角形,符合题意,故此选项正确.故选D.【点睛】本题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.二、填空题(每小题3分,共24分)11、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.12、x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠2,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于2.13、【分析】根据科学记数法的表示方法解答即可.【详解】解:0.0000046=.故答案为:.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、≠【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x≠.故答案为:≠.【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.15、25°【解析】试题分析:首先根据四边形的内角和我360°求出∠EDF=130°,则∠DEF+∠DFE=50°,根据题意得:∠EAD=∠FAD,∠AED=∠AFD=90°,AD=AD,则△ADE≌△ADF,∴DE=DF,则说明△DEF为等腰三角形,则∠DEF=∠DFE=25°.考点:三角形全等的判定和性质.16、1【分析】把长方体展开为平面图形,分两种情形求出AB的长,比较即可解答.【详解】把长方体展开为平面图形,分两种情形:如图1中,AB=,如图2中,AB=,∵1<4,∴爬行的最短路径是1cm.故答案为1.【点睛】本题考查平面展开-最短路径问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17、【分析】连接OC,根据题意结合勾股定理求得OC的长,即可求得点M对应的数.【详解】如图,连接OC,由题意可得:OB=2,BC=1,则,故点M对应的数是:.故答案为.【点睛】本题考查了勾股定理的应用,根据题意求得OC的长是解决问题关键.18、.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:.三、解答题(共66分)19、-1.【分析】先将原式中进行因式分解为,将题目中已知和代入即可求解.【详解】解:原式将,代入得【点睛】本题主要考查的是结合已知条件进行因式分解,正确的掌握因式分解中的提取公因式和公式法是解题的关键.20、﹣4xy5z3;【分析】(1)直接利用积的乘方运算法则化简,再利用整式的乘除运算法则计算得出答案;(2)直接利用分式的混合运算法则计算得出答案.【详解】解:(1)原式===﹣4xy5z3;(2)原式=====.【点睛】此题主要考查了整式以及分式的混合运算,解题关键是正确掌握整式以及分式的混合运算运算法则.21、(1);(2)147元.【解析】(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:.(2)由题意得:w=14x+15(10-x)=150-x,∵w随x增大而减小,,∴当x=3时,W最大值=150-3=147,即最多花147元.22、(1)作图见解析,A1(-1,1)、B1(-4,2)、C1(-3,4);(2);(3).【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵A′B=,∴PA+PB的最小值为;(3)△ABC的面积=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.23、详见解析【分析】根据角平分线性质得DE=DF,再根据等腰三角形性质得AE=AF,可证AD是EF的垂直平分线.【详解】AD⊥EF,AD平分EF,

证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,

∴DE=DF,

∴∠DEF=∠DFE,

∵DE⊥AB,DF⊥AC,

∴∠DEA=∠DFA=90°,

∴∠DEA-∠DEF=∠DFA-∠DFE,

即∠AEF=∠AFE,

∴AE=AF,

∴A在EF的垂直平分线上,

∵DE=DF,

∴D在EF的垂直平分线上,

即AD是EF的垂直平分线,

∴AD⊥EF,AD平分EF.【点睛】考核知识点:线段垂直平分线,角平分线性质.灵活运用角平分线性质和线段垂直平分线判定是关键.24、(1)(2,﹣1),(﹣2,1),7;(2)(0,);(3)①见解析;②8【分析】(1)根据关于x轴、y轴对称的点的坐标特征即可得到结论;(2)根据轴对称的性质得到B3(﹣2,﹣1),求得直线AB3的解析式,求出直线AB3与y轴的交点即可得到结论;(3)①借助勾股定理确定三边长,发现最长的边为10×10的正方形网格的对角线,然后以对角线的两个顶点为圆心,分别以为半径画圆,交点即为所求的F点,以此画出图形即可;②在10×10的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论