版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分子的密堆积(与CO2分子距离最近的CO2分子共有12个)干冰的晶体结构图分子的密堆积(与CO2分子距离最近的CO2分子共有12个)1109º28´共价键金刚石的晶体结构示意图109º28´共价键金刚石的晶体结构示意图2①金刚石中每个C原子以sp3杂化,分别与4个相邻的C原子形成4个σ键,故键角为109°28′,每个C原子的配位数为4;②每个C原子均可与相邻的4个C构成实心的正四面体,向空间无限延伸得到立体网状的金刚石晶体,在一个小正四面体中平均含有1+4×1/4=2个碳原子;③在金刚石中最小的环是六元环,1个环中平均含有6×1/12=1/2个C原子,含C-C键数为6×1/6=1;④金刚石的晶胞中含有C原子为8个,内含4个小正四面体,含有C-C键数为16。①金刚石中每个C原子以sp3杂化,分别与4个相邻的C原子形3180º109º28´SiO共价键二氧化硅晶体结构示意图180º109º28´SiO共价键二氧化硅晶体结构示意图4①二氧化硅中Si原子均以sp3杂化,分别与4个O原子成键,每个O原子与2个Si原子成键;②晶体中的最小环为十二元环,其中有6个Si原子和6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有的Si原子数为6×1/12=1/2,拥有的O原子数为6×1/6=1,拥有的Si-O键数为12×1/6=2,则Si原子数与O原子数之比为1:2。①二氧化硅中Si原子均以sp3杂化,分别与4个O原子成键,每5【总结】非金属单质是原子晶体还是分子晶体的判断方法(1)依据组成晶体的粒子和粒子间的作用判断:原子晶体的粒子是原子,质点间的作用是共价键;分子晶体的粒子是分子,质点间的作用是范德华力。(2)记忆常见的、典型的原子晶体。(3)依据晶体的熔点判断:原子晶体熔、沸点高,常在1000℃以上;分子晶体熔、沸点低,常在数百度以下至很低的温度。(4)依据导电性判断:分子晶体为非导体,但部分分子晶体溶于水后能导电;原子晶体多数为非导体,但晶体硅、晶体锗是半导体。(5)依据硬度和机械性能判断:原子晶体硬度大,分子晶体硬度小且较脆。
【总结】非金属单质是原子晶体还是分子晶体的判断方法6晶体结构——几种典型的晶体结构高二化学(选修3)第三章第三节金属晶体Ti晶体结构——几种典型的晶体结构高二化学(选修3)第三章第三节7Ti金属样品Ti金属样品8
1、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。金属为什么具有这些共同性质呢?2、金属的结构1、金属共同的物理性质容易导电、导热、有延展性、有金属光泽9(1)定义:
金属离子和自由电子之间的相互作用。(2)成键微粒:
金属阳离子和自由电子(3)键的存在:金属单质和合金中(4)方向性:无方向性(5)键的本质:
电子气理论
金属原子脱落下来的价电子形成遍布整晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起。(6)键的强弱:阳离子半径;所带电荷
阳离子所带电荷多、半径小----金属键强,熔沸点高㈠、金属键(1)定义:
金属离子和自由电子之间的相互作用。(2)成键微10组成粒子:金属阳离子和自由电子作用力:金属离子和自由电子之间的较强作用——金属键(电子气理论)㈡、金属晶体:概念:金属阳离子和自由电子通过金属键作用形成的晶体组成粒子:金属阳离子和自由电子㈡、金属晶体:11【讨论1】金属为什么易导电?在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。3、金属晶体的结构与金属性质的内在联系⑴、金属晶体结构与金属导电性的关系【讨论1】金属为什么易导电?12导电物质离子晶体金属晶体导电时的状态导电粒子升温时导电能力溶液或熔融液固态或液态阴离子和阳离子自由电子增强减弱比较离子体导电与金属晶体导电的区别:导电物质离子晶体金属晶体导电时的状态导电粒子升温时溶液或熔融13【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞,引起两者能量的交换。当金属某部分受热时,那个区域里的自由电子能量增加,运动速度加快,通过碰撞,把能量传给金属离子。金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。⑵、金属晶体结构与金属导热性的关系【讨论2】金属为什么易导热?自由电子在运动时经常与金属14【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必然导致共价键的断裂,因而难以锻压成型,无延展性。而金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。⑶、金属晶体结构与金属延展性的关系【讨论3】金属为什么具有较好的延展性?⑶、金属晶体结构与金属15金属的延展性自由电子金属离子外力金属的延展性自由电子金属离子外力16⑷、金属晶体结构具有金属光泽和颜色由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。⑷、金属晶体结构具有金属光泽和颜色由于自由电子可吸收所有频率174.金属晶体熔点变化规律⑴金属晶体熔点变化较大与金属晶体紧密堆积方式、金属阳离子与自由电子之间的金属键的强弱有密切关系.熔点最低的金属:汞(常温时成液态)熔点很高的金属:钨(3410℃)铁的熔点:1535℃⑵一般情况下,金属晶体熔点由金属键强弱决定:金属阳离子半径越小,所带电荷越多,自由电子越多,金属键越强,熔点就相应越高,硬度也越大。如:KNaMgAlLiNaKRbCs﹥﹥﹥﹥﹤﹤﹤4.金属晶体熔点变化规律⑴金属晶体熔点变化较大熔点最低的金属18资料金属之最熔点最低的金属是--------汞熔点最高的金属是--------钨密度最小的金属是--------锂密度最大的金属是--------锇硬度最小的金属是--------铯硬度最大的金属是--------铬最活泼的金属是----------铯最稳定的金属是----------金延性最好的金属是--------铂展性最好的金属是--------金资料金属之最熔点最低的金属是--------汞熔点最高的金属19金属晶体的形成是因为晶体中存在()
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用金属能导电的原因是()
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子练习CB金属晶体的形成是因为晶体中存在()
A.金属离子间的相20下列叙述正确的是()
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子化合物中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键BB4.下列有关金属键的叙述错误的是()A.金属键没有方向性B.金属键是金属阳离子和自由电子之间存在的强烈的静电吸引作用C.金属键中的电子属于整块金属D.金属的性质和金属固体的形成都与金属键有关下列叙述正确的是()
A.任何晶体中,若含有阳离子也215.下列有关金属元素特性的叙述正确的是A.金属原子只有还原性,金属离子只有氧化性B.金属元素在化合物中一定显正化合价C.金属元素在不同化合物中化合价均不相同D.金属元素的单质在常温下均为晶体B6.金属的下列性质与金属键无关的是()A.金属不透明并具有金属光泽B.金属易导电、传热C.金属具有较强的还原性D.金属具有延展性C5.下列有关金属元素特性的叙述正确的是B6.金属的227.能正确描述金属通性的是()A.易导电、导热B.具有高的熔点C.有延展性D.具有强还原性AC8.下列生活中的问题,不能用金属键知识解释的是()A.
用铁制品做炊具B.用金属铝制成导线C.用铂金做首饰D.铁易生锈D7.能正确描述金属通性的是()AC239.金属键的强弱与金属价电子数的多少有关,价电子数越多金属键越强;与金属阳离子的半径大小也有关,金属阳离子的半径越大,金属键越弱。据此判断下列金属熔点逐渐升高的是A.LiNaKB.NaMgAlC.LiBeMgD.LiNaMgB9.金属键的强弱与金属价电子数的多少有关,价电子数越多金24二.金属晶体的原子堆积模型二.金属晶体的原子堆积模型25(2)金属晶体的原子在二维平面堆积模型金属晶体中的原子可看成直径相等的小球。将等径圆球在一平面上排列,有两种排布方式,按左图方式排列,剩余的空隙较大,称为非密置层;按右图方式排列,圆球周围剩余空隙较小,称为密置层
。
(2)金属晶体的原子在二维平面堆积模型金属晶体中的原子26二维平面堆积方式行列对齐,四球一空非最紧密排列行列相错,三球一空最紧密排列密置层非密置层配位数:4配位数:6二维平面堆积方式行列对齐,四球一空行列相错,三球一空密置27三维空间堆积方式Ⅰ.简单立方堆积
非密置层的三维堆积方式三维空间堆积方式Ⅰ.简单立方堆积非密置层的三维堆积方28晶胞内原子数:配位数:空间利用率:典型金属:立方晶胞(钋)Po52%61晶胞内原子数:立方晶胞(钋)Po52%6129Na、K、Cr、Mo、W等属于体心立方堆积。Ⅱ.体心立方堆积(钾型)Na、K、Cr、Mo、W等属于体心立方堆积。Ⅱ.体心立方堆30这是非密置层另一种堆积方式,将上层金属填入下层金属原子形成的凹穴中,得到的是体心立方堆积。Ⅱ.体心立方堆积(钾型)晶胞内原子数:2配位数:8空间利用率:68%典型金属:K、Na、Fe体心立方晶胞这是非密置层另一种堆积方式,将上层金属填入下层金属原子形成的31第一层:三维空间堆积方式密置层的三维堆积方式第一层:三维空间堆积方式密置层的三维堆积方式32123456第二层:对第一层来讲最紧密的堆积方式是将球对准1,3,5位。(或对准2,4,6位,其情形是一样的)123456AB,
关键是第三层,对第一、二层来说,第三层可以有两种最紧密的堆积方式。123456第二层:对第一层来讲33两
个
密
置
层
密
置
堆
积三
个
密
置
层
密
置
堆
积六方堆积面心立方堆积两
个
密
置
层
密
置
堆
积三
个
密
置
层
密
置34
上图是此种六方堆积的前视图ABABA
第一种:将第三层球对准第一层的球123456
于是每两层形成一个周期,即ABAB堆积方式,形成六方堆积。
配位数12(同层6,上下层各3)Ⅲ.六方堆积(镁型)镁、锌、钛等属于六方堆积
上图是此种六方ABABA第一种:将35镁型(AB型六方最密堆积)BABABA镁型晶胞的抽取BAB六方晶胞晶胞内原子数:2配位数:12空间利用率:74%典型金属:MgZnTi镁型(AB型六方最密堆积)BABABA镁型晶胞的抽取BAB36
第三层的另一种排列方式,是将球对准第一层的1,3,5位,不同于AB两层的位置,这是C层。123456123456123456第三层的另一种排列方式,是将球对准第一层的37123456此种立方紧密堆积的前视图ABCAABC
第四层再排A,于是形成ABCABC三层一个周期。这种堆积方式可划分出面心立方晶胞。
配位数12(同层6,上下层各3)Ⅳ.面心立方堆积(铜型)金、银、铜、铝等属于面心立方堆积
123456此种立方紧密堆积的前视图ABCAABC38铜型(面心立方最密堆积)BAACCB1ABC铜型面心立方晶胞的抽取BBAC铜型(面心立方最密堆积)BAACCB1ABC铜型面心立方晶39
ABCABC形式的堆积,为什么是面心立方堆积?我们来加以说明。空间利用率高为74%。ABCABC形式的堆积,为什么是面心40①简单立方堆积配位数=6空间利用率=52.36%②体心立方堆积——体心立方晶胞配位数=8空间利用率=68.02%③六方堆积——六方晶胞配位数=12空间利用率=74.05%④面心立方堆积——面心立方晶胞配位数=12空间利用率=74.05%堆积方式及性质小结①简单立方堆积配位数=6空间利用率=52.36%②41一种结晶形碳,有天然出产的矿物。铁黑色至深钢灰色。质软具滑腻感,可沾污手指成灰黑色。有金属光泽。六方晶系,成叶片状、鳞片状和致密块状。密度2.25g/cm3,化学性质不活泼。具有耐腐蚀性,在空气或氧气中强热可以燃烧生成二氧化碳。石墨可用作润滑剂,并用于制造坩锅、电极、铅笔芯等。知识拓展-石墨一种结晶形碳,有天然出产的矿物。铁黑色至深钢灰42石墨晶体结构知识拓展-石墨石墨晶体结构知识拓展-石墨43石墨1、石墨为什么很软?2、石墨的熔沸点为什么很高(高于金刚石)?石墨为层状结构,各层之间是范德华力结合,容易滑动,所以石墨很软。石墨各层均为平面网状结构,碳原子之间存在很强的共价键,故熔沸点很高。金刚石的熔点是3550℃,石墨的熔点是3652℃~3697℃(升华)。石墨熔点高于金刚石。
石墨应该是混合型晶体而金刚石是原子晶体。石墨晶体的熔点反而高于金刚石,似乎不可思议,但石墨晶体片层内共价键的键长是1.42×10-10m,金刚石晶体内共价键的键长是1.55×10-10m。同为共价键,键长越小,键能越大,键越牢固,破坏它也就越难,也就需要提供更多的能量,故而熔点应该更高。
石墨1、石墨为什么很软?石墨为层状结构,各层之间是范德华力结44石墨的晶体结构请阅读并开展辩论:石墨是原子晶体吗?正方:是原子晶体
⑴同一层内,碳原子以共价键结合。⑵形成网状结构
反方:不是原子晶体
⑴层与层之间通过范德华力结合。⑵不是空间的网状结构⑶熔点很高⑶石墨很软石墨晶体——过渡型晶体或混合型晶体石墨的晶体结构请阅读并开展辩论:石墨是原子晶体吗?正方:是45石墨是层状结构的混合型晶体石墨是层状结构的混合型晶体46分析石墨结构中碳原子数与碳碳键数目比。
故正六边形中的碳碳键数为6×1/2=3,解析:我们可以先选取一个正六边形此结构中的碳原子数为6一个碳原子被三个六元碳环共用,正六边形中的碳原子数为6×1/3=2。六边形中的任一条边(即碳碳键)均被2个正六边形共用,所以碳原子数与碳碳键数目比为2:3。分析石墨结构中碳原子数与碳碳键数目比。故正六边形中的碳碳键47分子的密堆积(与CO2分子距离最近的CO2分子共有12个)干冰的晶体结构图分子的密堆积(与CO2分子距离最近的CO2分子共有12个)48109º28´共价键金刚石的晶体结构示意图109º28´共价键金刚石的晶体结构示意图49①金刚石中每个C原子以sp3杂化,分别与4个相邻的C原子形成4个σ键,故键角为109°28′,每个C原子的配位数为4;②每个C原子均可与相邻的4个C构成实心的正四面体,向空间无限延伸得到立体网状的金刚石晶体,在一个小正四面体中平均含有1+4×1/4=2个碳原子;③在金刚石中最小的环是六元环,1个环中平均含有6×1/12=1/2个C原子,含C-C键数为6×1/6=1;④金刚石的晶胞中含有C原子为8个,内含4个小正四面体,含有C-C键数为16。①金刚石中每个C原子以sp3杂化,分别与4个相邻的C原子形50180º109º28´SiO共价键二氧化硅晶体结构示意图180º109º28´SiO共价键二氧化硅晶体结构示意图51①二氧化硅中Si原子均以sp3杂化,分别与4个O原子成键,每个O原子与2个Si原子成键;②晶体中的最小环为十二元环,其中有6个Si原子和6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有的Si原子数为6×1/12=1/2,拥有的O原子数为6×1/6=1,拥有的Si-O键数为12×1/6=2,则Si原子数与O原子数之比为1:2。①二氧化硅中Si原子均以sp3杂化,分别与4个O原子成键,每52【总结】非金属单质是原子晶体还是分子晶体的判断方法(1)依据组成晶体的粒子和粒子间的作用判断:原子晶体的粒子是原子,质点间的作用是共价键;分子晶体的粒子是分子,质点间的作用是范德华力。(2)记忆常见的、典型的原子晶体。(3)依据晶体的熔点判断:原子晶体熔、沸点高,常在1000℃以上;分子晶体熔、沸点低,常在数百度以下至很低的温度。(4)依据导电性判断:分子晶体为非导体,但部分分子晶体溶于水后能导电;原子晶体多数为非导体,但晶体硅、晶体锗是半导体。(5)依据硬度和机械性能判断:原子晶体硬度大,分子晶体硬度小且较脆。
【总结】非金属单质是原子晶体还是分子晶体的判断方法53晶体结构——几种典型的晶体结构高二化学(选修3)第三章第三节金属晶体Ti晶体结构——几种典型的晶体结构高二化学(选修3)第三章第三节54Ti金属样品Ti金属样品55
1、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。金属为什么具有这些共同性质呢?2、金属的结构1、金属共同的物理性质容易导电、导热、有延展性、有金属光泽56(1)定义:
金属离子和自由电子之间的相互作用。(2)成键微粒:
金属阳离子和自由电子(3)键的存在:金属单质和合金中(4)方向性:无方向性(5)键的本质:
电子气理论
金属原子脱落下来的价电子形成遍布整晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起。(6)键的强弱:阳离子半径;所带电荷
阳离子所带电荷多、半径小----金属键强,熔沸点高㈠、金属键(1)定义:
金属离子和自由电子之间的相互作用。(2)成键微57组成粒子:金属阳离子和自由电子作用力:金属离子和自由电子之间的较强作用——金属键(电子气理论)㈡、金属晶体:概念:金属阳离子和自由电子通过金属键作用形成的晶体组成粒子:金属阳离子和自由电子㈡、金属晶体:58【讨论1】金属为什么易导电?在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。3、金属晶体的结构与金属性质的内在联系⑴、金属晶体结构与金属导电性的关系【讨论1】金属为什么易导电?59导电物质离子晶体金属晶体导电时的状态导电粒子升温时导电能力溶液或熔融液固态或液态阴离子和阳离子自由电子增强减弱比较离子体导电与金属晶体导电的区别:导电物质离子晶体金属晶体导电时的状态导电粒子升温时溶液或熔融60【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞,引起两者能量的交换。当金属某部分受热时,那个区域里的自由电子能量增加,运动速度加快,通过碰撞,把能量传给金属离子。金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。⑵、金属晶体结构与金属导热性的关系【讨论2】金属为什么易导热?自由电子在运动时经常与金属61【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必然导致共价键的断裂,因而难以锻压成型,无延展性。而金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。⑶、金属晶体结构与金属延展性的关系【讨论3】金属为什么具有较好的延展性?⑶、金属晶体结构与金属62金属的延展性自由电子金属离子外力金属的延展性自由电子金属离子外力63⑷、金属晶体结构具有金属光泽和颜色由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。⑷、金属晶体结构具有金属光泽和颜色由于自由电子可吸收所有频率644.金属晶体熔点变化规律⑴金属晶体熔点变化较大与金属晶体紧密堆积方式、金属阳离子与自由电子之间的金属键的强弱有密切关系.熔点最低的金属:汞(常温时成液态)熔点很高的金属:钨(3410℃)铁的熔点:1535℃⑵一般情况下,金属晶体熔点由金属键强弱决定:金属阳离子半径越小,所带电荷越多,自由电子越多,金属键越强,熔点就相应越高,硬度也越大。如:KNaMgAlLiNaKRbCs﹥﹥﹥﹥﹤﹤﹤4.金属晶体熔点变化规律⑴金属晶体熔点变化较大熔点最低的金属65资料金属之最熔点最低的金属是--------汞熔点最高的金属是--------钨密度最小的金属是--------锂密度最大的金属是--------锇硬度最小的金属是--------铯硬度最大的金属是--------铬最活泼的金属是----------铯最稳定的金属是----------金延性最好的金属是--------铂展性最好的金属是--------金资料金属之最熔点最低的金属是--------汞熔点最高的金属66金属晶体的形成是因为晶体中存在()
A.金属离子间的相互作用
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用金属能导电的原因是()
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子练习CB金属晶体的形成是因为晶体中存在()
A.金属离子间的相67下列叙述正确的是()
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子化合物中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键BB4.下列有关金属键的叙述错误的是()A.金属键没有方向性B.金属键是金属阳离子和自由电子之间存在的强烈的静电吸引作用C.金属键中的电子属于整块金属D.金属的性质和金属固体的形成都与金属键有关下列叙述正确的是()
A.任何晶体中,若含有阳离子也685.下列有关金属元素特性的叙述正确的是A.金属原子只有还原性,金属离子只有氧化性B.金属元素在化合物中一定显正化合价C.金属元素在不同化合物中化合价均不相同D.金属元素的单质在常温下均为晶体B6.金属的下列性质与金属键无关的是()A.金属不透明并具有金属光泽B.金属易导电、传热C.金属具有较强的还原性D.金属具有延展性C5.下列有关金属元素特性的叙述正确的是B6.金属的697.能正确描述金属通性的是()A.易导电、导热B.具有高的熔点C.有延展性D.具有强还原性AC8.下列生活中的问题,不能用金属键知识解释的是()A.
用铁制品做炊具B.用金属铝制成导线C.用铂金做首饰D.铁易生锈D7.能正确描述金属通性的是()AC709.金属键的强弱与金属价电子数的多少有关,价电子数越多金属键越强;与金属阳离子的半径大小也有关,金属阳离子的半径越大,金属键越弱。据此判断下列金属熔点逐渐升高的是A.LiNaKB.NaMgAlC.LiBeMgD.LiNaMgB9.金属键的强弱与金属价电子数的多少有关,价电子数越多金71二.金属晶体的原子堆积模型二.金属晶体的原子堆积模型72(2)金属晶体的原子在二维平面堆积模型金属晶体中的原子可看成直径相等的小球。将等径圆球在一平面上排列,有两种排布方式,按左图方式排列,剩余的空隙较大,称为非密置层;按右图方式排列,圆球周围剩余空隙较小,称为密置层
。
(2)金属晶体的原子在二维平面堆积模型金属晶体中的原子73二维平面堆积方式行列对齐,四球一空非最紧密排列行列相错,三球一空最紧密排列密置层非密置层配位数:4配位数:6二维平面堆积方式行列对齐,四球一空行列相错,三球一空密置74三维空间堆积方式Ⅰ.简单立方堆积
非密置层的三维堆积方式三维空间堆积方式Ⅰ.简单立方堆积非密置层的三维堆积方75晶胞内原子数:配位数:空间利用率:典型金属:立方晶胞(钋)Po52%61晶胞内原子数:立方晶胞(钋)Po52%6176Na、K、Cr、Mo、W等属于体心立方堆积。Ⅱ.体心立方堆积(钾型)Na、K、Cr、Mo、W等属于体心立方堆积。Ⅱ.体心立方堆77这是非密置层另一种堆积方式,将上层金属填入下层金属原子形成的凹穴中,得到的是体心立方堆积。Ⅱ.体心立方堆积(钾型)晶胞内原子数:2配位数:8空间利用率:68%典型金属:K、Na、Fe体心立方晶胞这是非密置层另一种堆积方式,将上层金属填入下层金属原子形成的78第一层:三维空间堆积方式密置层的三维堆积方式第一层:三维空间堆积方式密置层的三维堆积方式79123456第二层:对第一层来讲最紧密的堆积方式是将球对准1,3,5位。(或对准2,4,6位,其情形是一样的)123456AB,
关键是第三层,对第一、二层来说,第三层可以有两种最紧密的堆积方式。123456第二层:对第一层来讲80两
个
密
置
层
密
置
堆
积三
个
密
置
层
密
置
堆
积六方堆积面心立方堆积两
个
密
置
层
密
置
堆
积三
个
密
置
层
密
置81
上图是此种六方堆积的前视图ABABA
第一种:将第三层球对准第一层的球123456
于是每两层形成一个周期,即ABAB堆积方式,形成六方堆积。
配位数12(同层6,上下层各3)Ⅲ.六方堆积(镁型)镁、锌、钛等属于六方堆积
上图是此种六方ABABA第一种:将82镁型(AB型六方最密堆积)BABABA镁型晶胞的抽取BAB六方晶胞晶胞内原子数:2配位数:12空间利用率:74%典型金属:MgZnTi镁型(AB型六方最密堆积)BABABA镁型晶胞的抽取BAB83
第三层的另一种排列方式,是将球对准第一层的1,3,5位,不同于AB两层的位置,这是C层。123456123456123456第三层的另一种排列方式,是将球对准第一层的84123456此种立方紧密堆积的前视图ABCAABC
第四层再排A,于是形成ABCABC三层一个周期。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可及版权转让合同3篇
- 教师实习合同范本
- 顾问服务合同模板6篇
- 蛋糕师合同范本
- 加固修缮合同范本
- 新版工程合同里面包含设备
- 基于2024年度战略合作的品牌推广合同
- 2024年度广告合同协议3篇
- 2024年二手房更名买卖合同实例2篇
- 2024年二手房产按揭贷款审批流程合同2篇
- StimPlan压裂软件简介及使用指南
- 研究性学习—-发现问题与确定课题ppt课件
- 卫星定位测量的几个基本概念分享资料
- 交房期间业主维权突发事件应急预案
- HIRAYMA HVE50灭菌锅 操作手册
- 《草房子》读书交流会
- 皮尔逊Ⅲ型曲线模比系数计算(共享版).xls
- 新冠肺炎疫情防控一线医务人员申报确认表
- 辽宁省高校学生公寓情况统计表
- AC-16沥青混凝土配合比报告
- 小学生认识货币(课堂PPT)
评论
0/150
提交评论