




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点都在函数的图象上,下列对于的关系判断正确的是()A. B. C. D.2.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°3.把多项式因式分解,正确的是()A. B. C. D.4.如图,在中,,点在上,连接,将沿直线翻折后,点恰好落在边的点处若,,则点到的距离是()A. B. C. D.5.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是(
)A.1号袋 B.2号袋 C.3号袋 D.4号袋6.如果中不含的一次项,则()A. B. C. D.7.如果是一个完全平方式,那么的值是()A. B. C. D.8.对于一次函数,下列说法正确的是()A.它的图象经过点 B.它的图象与直线平行C.随的增大而增大 D.当时,随的增大而减小9.估算的值在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间10.如图所示,,点为内一点,点关于对称的对称点分别为点,连接,分别与交于点,连接,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF则需要添加一个适当的条件是______12.分式方程:的解是__________.13.如图,在直角坐标系中,点是线段的中点,为轴上一个动点,以为直角边作等腰直角(点以顺时针方向排列),其中,则点的横坐标等于_____________,连结,当达到最小值时,的长为___________________.14.计算:(-2a-2b)3÷2a-8b-3=____.15.如图,长方形纸片ABCD中,AB=6,BC=8,折叠纸片使AB边与对角线AC重合,点B与点F重合,折痕为AE,则EF的长是_________.16.甲、乙两同学近期次数学单元测试成绩的平均分相同,甲同学成绩的方差,乙同学成绩的方差则它们的数学测试成绩较稳定的是_______________________(填甲或乙)17.已知x,y满足方程组,则9x2﹣y2的值为_____.18.将一副直角三角板按如图所示叠放在一起,则图中∠α的度数是________.三、解答题(共66分)19.(10分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)20.(6分)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点0.①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.注:第(2)问的解答过程无需注明理由.21.(6分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式(3)甲、乙两人何时相距400米?22.(8分)在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值.23.(8分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.24.(8分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数的图象沿轴向右平移个单位长度可得到函数的图象,再沿轴向上平移个单位长度,得到函数的图象;如果将一次函数的图象沿轴向左平移个单位长度可得到函数的图象,再沿轴向下平移个单位长度,得到函数的图象.类似地,形如的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数的图象沿轴向右平移个单位长度,再沿轴向上平移个单位长度,得到函数________的图象(不用化简);(2)将的函数图象沿y轴向下平移个单位长度,得到函数________________的图象,再沿轴向左平移个单位长度,得到函数_________________的图象(不用化简);(3)函数的图象可看作由的图象经过怎样的平移变换得到?25.(10分)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).26.(10分)如图①,在A、B两地之间有汽车站C,客车由A地驶往C站,货车由B地驶往A地,两车同时出发,匀速行驶,图②是客车、货车离C站的路程、(km)与行驶时间x(h)之间的函数图像.(1)客车的速度是km/h;(2)求货车由B地行驶至A地所用的时间;(3)求点E的坐标,并解释点E的实际意义.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意将A,B两点代入一次函数解析式化简得到的关系式即可得解.【详解】将点代入得:,解得:,则,解得:,故选:A.【点睛】本题主要考查了一次函数图像上点坐标的求解及整式的化简,熟练掌握一次函数点的求法及整式的计算法则是解决本题的关键.2、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.3、D【分析】根据题意首先提取公因式a,进而利用十字相乘法分解因式得出即可.【详解】解:.故选:D.【点睛】本题主要考查提取公因式法以及十字相乘法分解因式,熟练并正确利用十字相乘法分解因式是解题的关键.4、A【分析】过点D作DF⊥BC于F,DG⊥AC于G,根据折叠的性质可得CB=CE,∠BCD=∠ACD,然后根据角平分线的性质可得DF=DG,然后结合已知条件和三角形面积公式即可求出AC和CB,然后利用S△BCD+S△ACD=列出方程即可求出DG.【详解】解:过点D作DF⊥BC于F,DG⊥AC于G由折叠的性质可得:CB=CE,∠BCD=∠ACD∴CD平分∠BCA∴DF=DG∵∴CE:AC=5:8∴CB:AC=5:8即CB=∵∴解得:AC=8∴CB=∵S△BCD+S△ACD=∴即解得:DG=,即点到的距离是故选A.【点睛】此题考查的是折叠的性质、角平分线的性质和三角形的面积公式,掌握折叠的性质、角平分线的性质定理和三角形的面积公式是解决此题的关键.5、C【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:
故选C.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.6、A【分析】利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,
由结果中不含x的一次项,得到m-5=0,
解得:m=5,
故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7、C【分析】根据完全平方公式的逆运算去解答即可.【详解】解:所以故选C.【点睛】此题重点考察学生对完全平方公式的理解,熟记公式是解题的关键.8、D【分析】根据一次函数图象上点的坐标特征、一次函数的性质判断即可.【详解】A、当时,,
∴点(1,-2)不在一次函数的图象上,A不符合题意;
B、∵,它的图象与直线不平行,B不符合题意;
C、∵<0,
∴y随x的增大而减小,C不符合题意;
D、∵<0,
∴y随x的增大而减小,D符合题意.
故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.9、D【分析】由题意利用“夹逼法”得出的范围,继而分析运算即可得出的范围.【详解】解:∵,∴4<<5,∴7<+3<1.故选:D.【点睛】本题考查估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.10、B【分析】由,根据三角形的内角和定理可得到的值,再根据对顶角相等可以求出的值,然后由点P与点、对称的特点,求出,进而可以求出的值,最后利用三角形的内角和定理即可求出.【详解】∵∴∵,∴又∵点关于对称的对称点分别为点∴,∴∴∴故选:B【点睛】本题考查的知识点有三角形的内角和、轴对称的性质,运用这些性质找到相等的角进行角的和差的转化是解题的关键.二、填空题(每小题3分,共24分)11、答案不唯一,如:BC=EF或∠BAC=∠EDF.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【详解】若添加BC=EF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为答案不唯一,如:BC=EF或∠BAC=∠EDF.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解答本题的关键.12、【分析】先去分母两边同时乘以x-1,转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:-1-x+1=2,
解得:x=-2,
经检验x=-2是分式方程的解,
故答案为:x=-2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13、【分析】(1)过E点作EF⊥y轴于点F,求证,即可的到点的横坐标;(2)设点E坐标,表示出的解析式,得到的最小值进而得到点E坐标,再由得到点D坐标,进而得到的长.【详解】(1)如下图,过E点作EF⊥y轴于点F∵EF⊥y轴,∴,∴∵为等腰直角三角形∴在与中∴∴∵∴∴点的横坐标等于;(2)根据(1)设∵,,是线段的中点∴∴∴当时,有最小值,即有最小值∴∵∴∵∴∴∴,故答案为:;.【点睛】本题主要考查了三角形全等的判定,点坐标的表示,二次函数的最值问题,两点之间的距离公式等,熟练掌握综合题的解决技巧是解决本题的关键.14、-4a2b6【分析】根据整式的除法运算法则进行运算即可.【详解】(-2a-2b)3÷2a-8b-3=﹣8a-6b3÷2a-8b-3=-4a2b6.【点睛】本题主要考察了整式的除法,牢牢掌握其运算法则是解答本题的关键.15、1【分析】求出AC的长度;证明EF=EB(设为x),利用等面积法求出x即可解决问题.【详解】解:∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得:AC2=AB2+BC2,
∴AC=10;
由题意得:
∠AFE=∠B=90°,
AF=AB=6,EF=EB(设为x),∴,即,解得.故答案为:1.【点睛】本题考查折叠的性质,矩形的性质.掌握等面积法是解题关键.16、乙【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,即可得出结论.【详解】解:∵>∴它们的数学测试成绩较稳定的是乙故答案为:乙.【点睛】此题考查的是方差的意义,掌握方差越小则波动越小,稳定性也越好是解决此题的关键.17、80【分析】利用平方差公式将9x2﹣y2进行转换成(3x+y)(3x﹣y)的形式,再将方程组代入原式求值即可.【详解】由方程组得:3x﹣y=10,3x+y=8,则原式=(3x+y)(3x﹣y)=80,故答案为:80【点睛】本题考查了方程组的问题,掌握平方差公式是解题的关键.18、75°【分析】根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠1=90°-60°=30°,所以,∠α=45°+30°=75°.故答案为75°【点睛】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.三、解答题(共66分)19、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD≌△DCE;(3)分类谈论,①若AD=AE时;②若DA=DE时,③若EA=ED时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB=AC=2,∴∠B=∠C,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB,∴∠BAD=∠CDE.在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若AD=AE时,则∠ADE=∠AED=40°,∵∠AED>∠C,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.【点睛】本题考查了全等三角形的判定,三角形外角的性质,等腰三角形的判定和性质.运用分类讨论解本题是解题的关键.20、(1)①见解析②∠BOA=2α(2)见解析【解析】(1)①根据等腰三角形的性质和三角形的内角和得到∠ACB=∠DCE,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到∠CAD=∠CBE=α+∠BAO,根据三角形的内角和即可得到结论;(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,根据全等三角形的性质得到MC=BP,同理CM=DQ,等量替换得到DQ=BP,根据全等三角形的性质即可得到结论.【详解】(1)①∵CA=CB,CD=CE,∠CAB=∠CED=α,∴∠ACB=180°-2α,∠DCE=180°-2α,∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE∴BE=AD;②∵△ACD≌△BCE∴∠CAD=∠CBE=α+∠BAO,∵∠ABE=∠BOA+∠BAO∴∠CBE+α=∠BOA+∠BAO∴∠BAO+α+α=∠BOA+∠BAO∴∠BOA=2α(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,∵∠BCP+∠BCA=∠CAM+∠AMC∴∠BCA=∠AMC∴∠BCP=∠CAM在△CBP和△ACM中∴△CBP≌△ACM(AAS)∴MC=BP.同理△CDQ≌△ECM∴CM=DQ∴DQ=BP在△BPN和△DQN中∴△BPN≌△DQN∴BN=ND,∴N是BD中点.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线进行求解.21、(1)24,40;(2)y=40t(40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t(40≤t≤60);(3)设出发t分钟后两人相距400米,根据题意得(40+60)t=2400﹣400或(40+60)t=2400+400,解得t=20或t=28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.22、(1)(2)见解析(3)【分析】(1)求出∠ABC的度数,即可求出答案;
(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°-α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;
(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°-α=15°,求出即可.【详解】(1)解:∵AB=AC,∠A=α,
∴∠ABC=∠ACB,∠ABC+∠ACB=180°-∠A,
∴∠ABC=∠ACB=(180°-∠A)=90°-α,
∵∠ABD=∠ABC-∠DBC,∠DBC=60°,
即∠ABD=30°-α;(2)△ABE为等边三角形.证明:连接AD,CD,ED,∵线段BC绕点B逆时针旋转得到线段BD,∴BC=BD,∠DBC=60°.又∵∠ABE=60°,∴且△BCD为等边三角形.在△ABD与△ACD中,∵AB=AC,AD=AD,BD=CD,∴△ABD≌△ACD(SSS).∴.∵∠BCE=150°,∴.∴.在△ABD和△EBC中,∵,,BC=BD,∴△ABD≌△EBC(AAS).∴AB=BE.∴△ABE为等边三角形.(3)∵∠BCD=60°,∠BCE=150°,∴.又∵∠DEC=45°,∴△DCE为等腰直角三角形.∴DC=CE=BC.∵∠BCE=150°,∴.而.∴.【点睛】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.23、(1)①45°,②;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明见解析.【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,延长AB和CH交于点F,取BF的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.24、(1);(2);;(3)先向左平移2个单位长度,再向上平移1个单位长度.【分析】(1)由于把直线平移k值不变,利用“左加右减,上加下减”的规律即可求解;(2)由于把抛物线平移k值不变,利用“左减右加,上加下减”的规律即可求解;(3)利用平移规律写出函数解析式即可.【详解】解:(1)将一次函数的图象沿x轴向右平移3个单位长度,再沿y轴向上平移1个单位长度后,得到一次函数解析式为:;故答案为:;(2)∵的函数图象沿y轴向下平移3个单位长度,∴得到函数:;再沿x轴向左平移1个单位长度,得到函数:;故答案为:;.(3)函数y=x2+2x的图象向左平移两个单位得到:y=(x+2)2+2(x+2),然后将其向上平移一个单位得到:y=(x+2)2+2(x+2)+1=(x+2)2+2x+1.∴先向左平移2个单位长度,再向上平移1个单位长度.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度柴油发动机居间代理服务合同
- 二零二五年度办公室租赁合同租赁保证金与押金管理
- 二零二五年餐具批发采购与市场推广合作协议
- 2025版科技研发成果转让合同
- 2025版白灰原料供应商与经销商购销合同范本精简
- 二零二五年餐饮场地租赁合同范本:法规解读
- 二零二五版北京新能源车牌指标租赁及后续服务合同
- 2025版车间承包与环保评估合作协议
- 2025年度食品安全检测设备采购与维护服务合同
- 2025版#筑梦的舞者#舞蹈培训机构广告位租赁合同
- 初中语文新课程标准试题及答案
- 宗教场所消防培训课件
- 隧道建设施工进度计划与工期保证措施
- GB/T 18186-2025酱油质量通则
- 2025年老年人能力评估师(三级)考试模拟试题(含答案)
- 八大浪费培训资料
- 月子中心各部管理制度
- 2025-2030年中国多西他赛注射液行业市场深度分析及发展趋势与投资研究报告
- 少儿推拿考试试题及答案
- 农发行考试题及答案
- 船舶租赁知识培训班课件
评论
0/150
提交评论