




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.3.以下列各组数为边长,能构成直角三角形的是()A.1,2,3 B.4,5,6 C.,, D.32,42,524.下列各式中,属于分式的是()A. B. C. D.5.要使分式无意义,则的取值范围是()A. B. C. D.6.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A.≥-1 B.>1 C.-3<≤-1 D.>-37.9的平方根是()A.±3 B.3 C.±81 D.±38.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25 B.25或20 C.20 D.159.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=-1的解为()A.1 B.2 C.1或2 D.1或-210.估计+1的值应在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间11.已知,的值为()A. B. C.3 D.912.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.如图,△ABC中,∠C=90°,∠ABC=30°,BC=1,点D是边BC上一动点,以AD为边作等边△ADE,使点E在∠C的内部,连接BE.下列结论:①AC=1;②EB=ED;③当AD平分∠BAC时,△BDE是等边三角形;④动点D从点C运动到点B的过程中,点E的运动路径长为1.其中正确的是__________.(把你认为正确结论的序号都填上)14.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.15.计算的结果为__________.16.化简:的结果是______.17.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.18.多项式因式分解为_________三、解答题(共78分)19.(8分)为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小卫在全校范围内随机抽取了若干名学生,就某日午饭浪费饭菜情况进行了调查.调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩余;D.饭和菜都有剩余.根据调查结果,绘制了如下两幅不完整的统计图.回答下列问题:(1)扇形统计图中,“B组”所对应的圆心角的度数是_______;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?.20.(8分)计算或解方程:(1)计算下列各题①(π﹣3.14)0+(﹣)2﹣3﹣2;②(3a﹣1)2﹣(3a﹣2)(3a+4);③(12a5b7﹣8a4b6﹣4a4b2)÷(﹣2a2b)2;(2)解分式方程:.21.(8分)(1)先化简,再求值:,其中;(2)解分式方程:.22.(10分)如图,在平面直角坐标系中,已知A(4,0)、B(0,3).(1)求AB的长为____.(2)在坐标轴上是否存在点P,使△ABP是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.23.(10分)已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.24.(10分)下面是小东设计的“作△ABC中BC边上的高线”的尺规作图过程.已知:△ABC.求作:△ABC中BC边上的高线AD.作法:如图,①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E;②连接AE交BC于点D.所以线段AD是△ABC中BC边上的高线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵=BA,=CA,∴点B,C分别在线段AE的垂直平分线上()(填推理的依据).∴BC垂直平分线段AE.∴线段AD是△ABC中BC边上的高线.25.(12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.(1)求AB的长;(2)求AC的长.26.计算:(1)3a3b•(﹣1ab)+(﹣3a1b)1(1)(1x+3)(1x﹣3)﹣4x(x﹣1)+(x﹣1)1.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;
B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;
C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;
D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.
故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、A【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.3、C【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选C.【点睛】考查勾股定理的逆定理,:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.4、D【分析】由题意根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:A、没有分母,所以它是整式,故本选项错误;B、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;C、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;D、的分母中含有字母,因此它们是分式,故本选项正确;故选:D.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.5、A【分析】根据分式无意义,分母等于0列方程求解即可.【详解】∵分式无意义,∴x+1=0,解得x=-1.故选A.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6、A【解析】>-3,≥-1,大大取大,所以选A7、D【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±3)2=9,∴9的平方根是±3,故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8、A【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:
当腰为5时,5+5=10,所以不能构成三角形;
当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=1.
故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9、B【分析】分类讨论与的大小,列出分式方程,解方程即可.【详解】解:当时,x<0,方程变形为,去分母得:2=3-x,
解得:x=1(不符合题意,舍去);
当,,x>0,方程变形得:,去分母得:1=3-x,
解得:x=2,
经检验x=2是分式方程的解,
故选:B.【点睛】此题考查了解分式方程,分类讨论是解本题的关键.10、B【解析】解:∵,∴.故选.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.11、D【分析】先将因式分解,再将代入,借助积的乘方公式(,本题中为逆运用)和平方差公式()求解即可.【详解】解:,将代入,原式=.故选:D.【点睛】本题考查因式分解的应用,积的乘方公式,平方差公式,二次根式的化简求值.解决此题的关键是①综合利用提公因式法和公式法对原代数式进行因式分解;②利用积的乘方公式和平方差公式对代值后的式子进行适当变形.12、A【分析】先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故选:A.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.二、填空题(每题4分,共24分)13、②③④【分析】作EF⊥AB垂足为F,连接CF,可证△EAF≌△DAC,推出点E在AB的垂直平分线上,根据三线合一可证为等腰三角形,即可得到EB=ED,由AD平分∠BAC计算∠CAD=∠EAB=∠EBA=30°,从而证得△BDE是等边三角形,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【详解】解:∵△ABC中,∠C=90°,∠ABC=30°,BC=1,∴,故①错误;如图,作EF⊥AB垂足为F,连接CF,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∵△ADE是等边三角形,∴AE=AD=ED,∠EAD=60°,∴∠EAD=∠BAC,∴∠EAF=∠DAC,在△EAF和△DAC中,,∴△EAF≌△DAC,∴AF=AC,EF=CD,∵,∴,∴F为AB的中点,∴EF为的中线,又∵,∴,∵,∴,故②正确;∵AD平分∠BAC,∴,∴,∵,∴,∵,∴,又∵,∴是等边三角形,故③正确;∵,,∴点E在AB的垂直平分线上,∴在点D从点C移动至点B的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点C移动至点B的过程中,点E移动的路线为1,故④正确;故答案为:②③④.【点睛】本题考查直角三角形性质,等边三角形性质,利用这些知识证明三角形全等为关键,掌握直角三角形和等边三角形的性质为解题关键.14、2:2【详解】解:∵小正方形与大正方形的面积之比为1:12,∴设大正方形的面积是12,∴c2=12,∴a2+b2=c2=12,∵直角三角形的面积是=2,又∵直角三角形的面积是ab=2,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=12+2×6=12+12=21,∴a+b=1.则a、b是方程x2﹣1x+6=0的两个根,故b=2,a=2,∴.故答案是:2:2.考点:勾股定理证明的应用15、1【分析】根据分式的加减法法则计算即可得答案.【详解】==1.故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键.16、【解析】原式=.17、1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴×10×CE=30,∴CE=1.即CM+MN的最小值为1.故答案为1.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.18、x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【详解】解:故答案为:【点睛】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.三、解答题(共78分)19、(1)12°;(2)见解析;(3)这日午饭有剩饭的学生人数是150人,将浪费1.5千克米饭【分析】(1)用A组人数除以它所占的百分比即可得到调查的总人数;求出B组所占的百分比,再乘以360°即可得出“B组”所对应的圆心角的度数;(2)用调查的总人数乘以C组所占的百分比得出C组的人数,进而补全条形统计图;(3)先求出这日午饭有剩饭的学生人数为:2500×(20%+×100%)=150(人),再用人数乘每人平均剩10克米饭,把结果化为千克.【详解】(1)这次被抽查的学生数=66÷55%=120(人),
“B组”所对应的圆心角的度数为:360°×=12°.
故答案为12°;
(2)B组的人数为:120-66-18-12=24(人);补全条形统计图如图所示:(3)2500(20%+)=150(人)15010=1500(克)=1.5(千克)答:这日午饭有剩饭的学生人数是150人,将浪费1.5千克米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.20、(1)①1;②9﹣12a;③3ab5﹣2b4+1;(2)x=﹣.【分析】(1)①原式利用零指数幂、负整数指数幂法则计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算即可求出值;③原式利用幂的乘方与积的乘方运算法则计算,再利用多项式除以单项式法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)①原式=1+﹣=1;②原式=9a2﹣6a+1﹣9a2﹣6a+8=9﹣12a;③原式=(12a5b7﹣8a4b6﹣4a4b2)÷(4a4b2)=3ab5﹣2b4+1;(2)去分母得:x2﹣x=2x+4+x2+x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.【点睛】本题考查代数式的运算及分式方程的计算,关键在于熟练掌握基础计算方法.21、(1),;(2)【分析】(1)先进行化简,然后将a的值代入求解;(2)根据分式方程的解法求解.【详解】(1)原式=====当时,原式=(2)原方程可化为:方程两边乘得:检验:当时,所以原方程的解是【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.22、(1)5;(2)(0,8),(0,-3),(0,-2),,(9,0),(-1,0),(-4,0),;理由见解析【分析】(1)根据A、B两点坐标得出OA、OB的长,再根据勾股定理即可得出AB的长(2)分三种情况,AB=AP,AB=BP,AP=BP,利用等腰三角形性质和两点之间距离公式,求出点P坐标.【详解】解:(1)∵A(4,0)、B(0,3).
∴OA=3,OB=4,(2)当点P在y轴上时当AB=BP时,此时OP=3+5=8或OP=5-3=2,∴P点坐标为(0,8)或(0,-2);
当AB=AP时,此时OP=BO=3,∴P点坐标为;(0,-3);当AP=BP时,设P(0,x),∴;∴P点坐标为当点P在x轴上时当AB=AP时,此时OP=4+5=9或OP=5-4=1,∴P点坐标为(9,0)或(-1,0);
当AB=BP时,此时OP=AO=4,∴P点坐标为(-4,0);当AP=BP时,设P(x,0),∴;∴P点坐标为综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),,(9,0),(-1,0),(-4,0),
【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.23、1【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出1a-5b+8的值,然后根据立方根的定义求解.【详解】∵2a+1的平方根是±3,3a+2b-1的立方根是-2,
∴2a+1=9,3a+2b-1=-8,
解得a=1,b=-8,
∴1a-5b+8=1×1-5×(-8)+8=61,
∴1a-5b+8的立方根是1.【点睛】此题考查平方根,立方根的定义,列式求出a、b的值是解题的关键.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关注食品安全 共建和谐校园-食品安全教育主题班会
- 2025年购房合同:国内商品房交易协议
- 2025出口买方信贷合同出口买方信贷借款协议
- 2025店铺租赁合同范本2
- 2025合同法如何评价租赁合同中的房屋转租条款的有效性
- 2025合同履行担保书范本
- 2025合同法居间合同合同纠纷解决办法
- 2025图书出版许可合同
- 休克的概念与急救护理
- 2025新版委托生产合同协议书
- 无卤阻燃剂知识培训课件
- DB42∕T 1496-2019 公路边坡监测技术规程
- 2025贵州省安全员-C证考试(专职安全员)题库及答案
- 2025-2030年中国小麦加工产业运行动态及发展可行性分析报告
- 乾坤未定皆有可能-2025届高三百日誓师班会课件
- 2025年山西汾西矿业集团公司招聘笔试参考题库含答案解析
- 2024年度英语课件容貌焦虑
- 神经外科质量与安全管理工作计划
- 城市违建拆除施工方案
- 复色激光光谱分析研究
- 农药代销协议书模板
评论
0/150
提交评论