2022年山东省德州经济开发区七校联考八年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2022年山东省德州经济开发区七校联考八年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2022年山东省德州经济开发区七校联考八年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2022年山东省德州经济开发区七校联考八年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2022年山东省德州经济开发区七校联考八年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.122.如图,等腰三角形的顶角为,底边,则腰长为().A. B. C. D.3.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.5.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣66.用科学计数法表示为()A. B. C. D.7.如图,在中,,是延长线上一点,是延长线上一点,是延长线上一点,,则的度数为()A. B. C. D.8.阿牛不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),他认为只须将其中的第2块带去,就能配一块与原来一样大小的三角形,阿牛这样做的理由是()A.SAS B.ASA C.AAS D.SSS9.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④ B.②③④ C.①③④ D.①②③10.同一直角坐标系中,一次函数y=kx+b的图象如图所示,则满足y≥0的x取值范围是()A.x≤-2 B.x≥-2 C.x<-2 D.x>-211.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,已知,添加一个条件,使得,下列条件添加错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM的周长的最小值为_____.14.已知,分别是的整数部分和小数部分,则的值为_______.15.计算:=_________.16.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________17.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.18.如图,中,,以它的各边为边向外作三个正方形,面积分别为、、,已知,,则______.三、解答题(共78分)19.(8分)已知一次函数与的图象都经过点且与轴分别交于,两点.(1)分别求出这两个一次函数的解析式.(2)求的面积.20.(8分)如图,在中,,,点是上一动点,连结,过点作,并且始终保持,连结.(1)求证:;(2)若平分交于,探究线段之间的数量关系,并证明.21.(8分)如图,已知点B、E、C、F在同一条直线上,AB∥DE,AC∥DF,BE=CF.求证:AC=DF.22.(10分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?23.(10分)如图,已知∠AOB,以O为圆心,以任意长为半径作弧,分别交OA,OB于F,E两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点F作FD∥OB交OP于点D.(1)若∠OFD=116°,求∠DOB的度数;(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.24.(10分)传统文化与我们生活息息相关,中华传统文化包括古文古诗、词语、乐曲、赋、民族音乐、民族戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍,求一场“民族音乐”节目演出的价格.25.(12分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.2、C【解析】过作,∵,.∴,.在中,,,∴,,,∴,∴.故选C.3、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.4、C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.5、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、C【分析】根据绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:-0.00003=.故选:C.【点睛】本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、C【分析】根据等腰三角形的两个底角相等和三角形的内角和解答即可.【详解】解:∵∠DAC=131°,∠DAC+∠CAB=180°,

∴∠CAB=49°,

∵AC=BC,

∴∠CBA=49°,∠ACB=180°-49°-49°=82°,

∴∠ECF=180°-∠ACB=180°-82°=98°,

故选:C.【点睛】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.8、B【解析】应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,

只有第2块有完整的两角及夹边,符合ASA.

故选:B.【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个一般三角形全等的一般方法有:SSS、SAS、ASA、AAS.9、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,

∴AC=BC,CD=CE,∠ACB=∠DCE=60°,

∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,

∴∠ACD=∠BCE,

∴△ADC≌△BEC(SAS),故①正确,

∴AD=BE,故②正确;

∵△ADC≌△BEC,

∴∠ADC=∠BEC,

∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;

∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,

∴△CDP≌△CEQ(ASA).

∴CP=CQ,

∴∠CPQ=∠CQP=60°,

∴△CPQ是等边三角形,故④正确;

故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.10、A【分析】根据图象找到一次函数图象在x轴上方时x的取值范围.【详解】解:表示一次函数在x轴上方时,x的取值范围,根据图象可得:.故选:A.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用函数图象解不等式的方法.11、D【解析】由点A中,,可得A点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12、B【分析】根据三角形全等的判定定理添加条件即可.【详解】若添加,则可根据“AAS”判定两三角形全等;若添加,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等;若添加,则可根据“SAS”判定两三角形全等;若添加,则可根据“ASA”判定两三角形全等;故选:B【点睛】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.二、填空题(每题4分,共24分)13、1.【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×6×AD=18,解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=1.故答案为:1.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,轴对称-最短路线问题.能根据轴对称的性质得出AM=MC,并由此得出MC+DM=MA+DM≥AD是解决此题的关键.14、【分析】先求出介于哪两个整数之间,即可求出它的整数部分,再用减去它的整数部分求出它的小数部分,再代入即可.【详解】∵,∴=,∴,∴,∴.【点睛】此题考查的是带根号的实数的整数部分和小数部分的求法,找到它的取值范围是解决此题的关键.15、【分析】先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为【点睛】此题考查的是二次根式的性质和去绝对值.16、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【点睛】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.17、x>﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【详解】解:由题意及图象得:不等式3x+b>ax﹣3的解集为x>﹣2,故答案为:x>﹣2【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.18、1【分析】由中,,得,结合正方形的面积公式,得+=,进而即可得到答案.【详解】∵中,,∴,∵=,=,=,∴+=,∵,,∴6+8=1,故答案是:1.【点睛】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.三、解答题(共78分)19、(1)和;(2)【分析】(1)把分别代入和可求出和,从而得到一次函数的解析式;(2)通过解析式求出B、C的坐标,即得到OA、BC的长度,从而算出面积.【详解】(1)把分别代入和得,,,这两个函数分别为和.(2)在和中,令,可分别求得和,,,又,,,.【点睛】本题考查了一次函数的图象和性质,正确求出直线与坐标轴的交点是解题的关键.20、(1)见解析;(2),见解析【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;

(2)结论:.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题.【详解】(1)∵,∴,又∵,∴,在△ABD和△ACE中,,∴△ABD≌△ACE;(2),理由如下:连接FE,∵,∴,由(1)知△ABD≌△ACE,∴,,∴,∴,∴,∵AF平分,∴,在△DAF和△EAF中,,∴△DAF≌△EAF,∴.∴.【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、证明见解析【分析】根据平行线的性质可得∠B=∠DEF,∠ACB=∠F,由BE=CF可得BC=EF,运用ASA证明△ABC与△DEF全等,从而可得出结果.【详解】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∵AB∥DE,∴∠DEF=∠B,∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点睛】此题考查了全等三角形的判定与性质,证明线段相等,通常证明它们所在的三角形全等.22、(1)每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2);(3)69.5【分析】(1)根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家的用水量判断其在哪个范围内,代入相应的函数关系式求值即可.【详解】解:(1)由题可得,解得:,∴每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2)①当时,,②当时,,综上:;(3)∵,∴答:他家应交水费69.5元.【点睛】本题考查了二元一次方程组的应用及一次函数的应用,明确题意正确找出数量关系是解题关键,同时在求一次函数表达式时,此函数是一个分段函数,注意自变量的取值范围.23、(1)32°;(2)见解析.【解析】(1)首先根据OB∥FD,可得∠OFD+∠AOB=18O°,进而得到∠AOB的度数,再根据作图可知OP平分∠AOB,进而算出∠DOB的度数即可;(2)首先证明∴∠AOD=∠ODF,再由FM⊥0D可得∠OMF=∠DMF,再加上公共边FM=FM可利用AAS证明△FMO≌△FMD.【详解】(1)∵OB∥FD,∴∠OFD+∠AOB=18O°,又∵∠OFD=116°,∴∠AOB=180°﹣∠OFD=180°﹣116°=64°,由作法知,OP是∠AOB的平分线,∴∠DOB=∠AOB=32°;(2)证明:∵OP平分∠AOB,∴∠AOD=∠DOB,∵OB∥FD,∴∠DOB=∠ODF,∴∠AOD=∠ODF,又∵FM⊥OD,∴∠OMF=∠DMF,在△MFO和△MFD中,∴△MFO≌△MFD(AAS).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.24、一场“民族音乐”节目演出的价格为4400元.【分析】设一场“民族音乐”节目演出的价格为x元,根据等量关系:用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍列出分式方程求解即可.【详解】设一场“民族音乐”节目演出的价格为x元,则一场“戏曲进校园”的价格为(x+600)元.由题意得:解得:x=4400经检验x=4400是原分式方程的解.答:一场“民族音乐”节目演出的价格为4400元.【点睛】本题运用了分式方程解应用题,找准等量关系列出方程是解决问题的关键.25、(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQ>VP,只能是点Q追上点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论