高分子化学-Polymer-chemistry5共聚-Copolymerization课件_第1页
高分子化学-Polymer-chemistry5共聚-Copolymerization课件_第2页
高分子化学-Polymer-chemistry5共聚-Copolymerization课件_第3页
高分子化学-Polymer-chemistry5共聚-Copolymerization课件_第4页
高分子化学-Polymer-chemistry5共聚-Copolymerization课件_第5页
已阅读5页,还剩297页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高分子化学

Polymerchemistry高分子化学

PolymerchemistryChapter5Copolymerization共聚5.1introduction5.2copolymercomposition5.3microstructure5.4TheRateEquationofcopolymerization5.5determinationofreactivityratio竞聚率的测定5.6Q,escheme5.7ioniccopolymerizationChapter5Copolymerization5.1Copolymerizationisatypeofpolymerizationstartingfromamixtureoftwo(ormore)kindsofmonomerstoproduce“copolymners”.Theircounterpartsare“homopolymerization”and“homopolymers”startingfromonlyonekindsofmonomers.Part1IntroductionCopolymerizationisatypeof1.1ImportanceofcopolymerizationAnimportantpolymermodificationtechniqueForthepurposeof,(1)introducingproperfunctionalitiesintopolymers(2)evaluatingthemonomerreactivityinpolymerizationandthemechanismofpolymerization

1.1ImportanceofcopolymeriExamplesStyrene+Butadiene→SBRAcrylonitrile+Butadiene→NBRAcrylonitrile+Butadiene+Styrene→ABSNaAcrylate+VinylAlcohol→Waterabsorbentresin

ExamplesStyrene+Butadiene→Fromtheexamples,wegetByusingcopolymerizationtechniques,manypropertieshavebeengreatlyimproved,suchas,mechanicalstrength,elasticity,plasticity,Tg,solubility,surfaceproperties,anti-causticity,anti-aging,resolvability,andsoon.Ifnecessary,thethirdmonomershouldbeemployedtoimprovethepropertiesofpolymers.

Fromtheexamples,wegetByusTheimportantfactorsTodescribethehomopolymerization,weusethefollowingfactors,suchas,polymerizationrate,averagemolecularweightofproduct,moleculardistributionDifferentfromthehomopolymerization,wedescribethecopolymerizationbyusingthefactorsascopolymercompositionandsequencedistribution.

TheimportantfactorsTodescriSortsofcopolymersAccordingtothechainmicrostructures,thecopolymerscanbeclassifiedintofoursorts,RandomcopolymerAlternativecopolymerBlockcopolymerGraftcopolymerSortsofcopolymersAccordingtRandomcopolymer

UnitM1UnitM2Wenameitaspoly(M1-co-M2),suchaspoly(butadiene-co-styrene)RandomcopolymerUnitM1UnitM2AlternativecopolymermonomerunitstrictlyjointonebyoneWenameitaspoly(M1-alt-M2),suchaspoly(styrene-alt-maleicanhydride)AlternativecopolymermonomeruBlockcopolymerM1blockM2blocktherearediblock,triblockandmultiblockSuchasAB,ABA,ABCand(AB)nWenameitaspoly(M1-b-M2)or(M1/M2)blockcopolymer,suchaspoly(styrene-b-butadiene)or(styrene/butadiene)blockcopolymerBlockcopolymerM1blockM2bloGraftcopolymerbackboneBranchchainWenameitasbackbone-g-branchor(backbone/branch)graftcopolymer,suchaspoly(styrene-g-butadiene)or(styrene/butadiene)graftcopolymerGraftcopolymerbackboneBranchInthetypicalcopolymerization,therearesomeinterestingphenomena,suchas,Thedifferencebetweenthemonomerfeedratiototheproductcopolymercomposition,Somemonomerpairsaredifficulttoreactwitheachother,whilesomemonomerscanreactwithothermonomerbutnotreactwithitself.Thatisbecauseofthediscrepancyofactivitybetweendifferentkindsofmonomers.Part2CopolymerCompositionInthetypicalcopolymerizatio5.2.1Copolymercompositionequation

ChainpolymerizationInitiationPropagationtermination

M1、M2:monomerpairs~~M1*、~~M2*:reactivecenters5.2.1CopolymercompositioneqChaininitiationKi1Ki2ChaininitiationKi1Ki2ChainpropagationChainpropagationChainterminationk11M1*+M1*PolymerR11=k11tt[M1*]2t121212kM1*+M*PolymerR=ktt[M1*]2t2[M*]Chainterminationk11M1*+M1*PolAssumptionsforcopolymerizationActivityequaltheory:ThereactivityofchainendisindependentofchainlengthReactivityofagrowingchaindependsonlyontheterminalmonomerunitThemostofmonomersareconsumedduringthepropagationandnodepropagationAssumptionsforcopolymerizatiSteadystateofpropagation:Steadystateofpropagation:DeductionofcopolymercompositionDeductionofcopolymercomposiThesteadystateassumptionsonM1*、M2*ThesteadystateassumptionsodefinitiondefinitionMayo-LewisEquationInwhich,d[M1]/d[M2]:instantaneouspolymercomposition[M1]/[M2]:instantaneousmonomercompositionr1、r2:reactivityratio~~M1*+M1→

k11r1=k11/k12~~M2*+M2→k22Mayo-LewisEquationInwhich,AnotherformofMayo-LewisEquation(5-18)Definition:AnotherformofMayo-LewisEquDiscussionofMayo-LewisEquationInstantaneouscopolymercompositionNormallycopolymercompositionisdifferentfromthatofmonomerpairs(feedratio),exceptthecaseofr1=r2=1orr1[M1]+[M2]=[M1]+r2[M2]=1Therearedifferentkindsofactivecenter,suchasradical,anionicandcationicion.Ther1andr2ofsamemonomerpairsshouldbedifferentamongdifferentkindsofactivecenterFortheioniccopolymerization,thereactivityratioisgreatlyaffectedbythepropertiesofanti-ion,solventandtemperature.DiscussionofMayo-LewisEquat5.2.2ThecopolymercompositioncurveandthetypeofcopolymerizationReactivityratioRistheratiobetweentheactivityofmonomerpairsinthecompetedpropagation.r1=K11/K125.2.2ThecopolymercompositiTherelationbetweenr1andpolymerizationcharacterr1=0:onlycopolymerizationbutnohomopolymerization;0<r1<1:monomertendstohomopolymerizationandthehomopolymerizationincreasewiththerdecrease;r1=1:sameabilitybetweenhomo-andcopolymerization;

1<r1<:monomertendstocopolymerizationandthecopolymerizationincreasewiththerincrease;Therelationbetweenr1andpo①②③④①②③④Curve1.Alternatingcopolymerizationr1=0,r2=0e.g.60℃,St(r1=0.01)—maleicanhydride(r2=0)F1~f1plotCurve1.Alternatingcopolymecharacter1)Onlycopolymerizationandnohomopolymerization:k11=0,k22=02)Twokindsofmonomerunitarrangealternatively,F1、F2takehalfofchains3)Practicallyitisr1→0andr2→0insteadofr1=r2=0.Smallerr1*r2is,strongertrendsofalternativecopolymerizationshows.character1)OnlycopolymerizatCurve2.r1<1,r2<1,withazeotropepointr1=0.6r2=0.3R1=0.5R2=0.5F1~f1plotAAzeotropepointCurve2.r1<1,r2<1,withazeotrAtazeotropepointTheazeotropeisimportant,particularlyinindustry,becausethemonomerandcopolymercompositiondonotchangewithconversion,thusproducingcopolymershomogeneousincomposition.Copolymerizationsundertheotherconditionswillchangetheinstantaneouscompositionsalongthecompositioncurve.AtazeotropepointTheazeotropCurve3.Idealazeotropecopolymerizationr1=0,r2=0

F1~f1plotCurve3.IdealazeotropecopolF1=f1anddonotchangewithconversion(idealcopolymerization)

k11=k12,k22=k21,~~M1*and

~~M2*havesamereactivitywithM1andM2;e.g.:

CF2=CF2~CF2=CFClSt~p-MSt,70℃F1=f1anddonotchangewithcCurve4.r1>1,r2<1orr1<1,r2>11050.50.11)r1>1(k11>k12)andr2<1(k22<k21)showsthatM1ismoreactivethanM2nomatterfor~~M1*and~~M2*.F1isalwayslargerthanf1andthecurveisalwaysabovethediagonal.Thesituationissimilarforr1<1,r2>1andthecurveisbelowthediagonal.Curve4.r1>1,r2<1orr1<2)asr1*r2=1(r2=1/r1),itbecomesidealcopolymerization

Inthiscase,~~M1*and~~M2*,havethesamepreferenceforaddingoneortheotheroftwomonomersreactivity.2)asr1*r2=1(r2=1/r1),Curve5.r1>1,r2>1styrene(r1=1.38)/isoprene(r2=2.05)Curve5.r1>1,r2>1styrene(r1=1Characterofcurve5Theshapeandpositionofcurve5contrarytothatofr1<1,r2<1;ThereisazeotropepointThemonomerpairsprefertohomopolymerizationratherthancopolymerize.Asr1andr2>>1,theblocksformalongthechain.Characterofcurve5Theshape5.2.3IntegratedequationforcopolymercompositionTheimportanceofcompositioncontrolonproductproperties:SBrubber:S%22~25%tyreS%↑stifftyreS%↓coldresistant↑1)Compositionisdesignedaccordingtothefinalproperties;2)Thecompositionofproductsarenormallydifferentfromthatofmaterials;3)Thecopolymercompositionchangewiththeconversion.Key:howtopreparethecopolymerwiththeexpectedcomposition.5.2.3Integratedequationfor(1)Theinfluenceofconversiononthecopolymercompositiona.Qualitativedescriptione.g.:F1~f1curve(r1<1,r2<1)AtpointA(azeotrope)(f1)A=f1,F1=(f1)A=f1;AtpointB,(F1)BdecreasealongthecurveBOwithconversion.AtpointC,itiscontrarytothatofpointB.(1)TheinfluenceofconversionF1~f1curve(r1<1,r2<1)Conclusion:thecopolymercompositionchangewithconversion;theproductsaremixturesofcopolymerswithdifferentcomposition(compositiondistribution)F1~f1curve(r1<1,r2<1)Conclus2.IntegratedequationSkeistmethod:Forabinarysystem,totalmolarnumberofmonomerpairsisMandF1>f1AsdMofmonomerarepolymerized,theM1unitinthecopolymerchainincreaseF1dMandthemonomerratiochangetof1-df1.2.IntegratedequationSkeistminwhich,Mf1--theM1inthematerial;

F1dM--theM1unitinthecopolymerf1-df1--afterdMofM1reacted,theratioofM1inthematerial;(f1-df1)(M-dM)--unreactedM1inmaterial.Mf1-(M-dM)(f1-df1)=F1dM(5-21)inwhich,Mf1-(M-dM)(fdM.df1isneglectedandthenresettheaboveequation:

Mdf1+f1dM=F1dMWegot:SkeistEquationdM.df1isneglectedandthenr

DefinitethemoleconversionDefinitethe

(5-23a)Meyeret.Al,(5-23b)(5-23a)Meyeret.Al,(5-23Withcertainvalueofr1,r2andinitialfeedratiof01,wecalculatethevalueofC,F1,andf1

TherelationbetweenaveragecopolymercompositionandconversionC,(5-24)Withcertainvalueofr1,r2an0.20.8Molefractionconversion1-M/M001.01.0f1F1averageM1incopolymerf2F2averageM2incopolymer0.20.8Molefractionconversion5.2.4Copolymercompositiondistributionandcontrolmethods(1)CopolymercompositiondistributionA.Infigure5-4,st(r1=0.30)anddiethylfumarate(r2=0.07)azeotrope5.2.4Copolymercompositionf1=0.20f1=0.40f1=0.50f1=0.80f1=0.70Azeotropiccopolymerf1=0.57Copolymerizationofstyreneanddiethylfumarate

f1=0.20f1=0.40f1=0.50f1=0.80f1Conclusion:1.Ifthemonomerfeedratioisazeotrope,thecompositiondoesnotchangewithconversion;2.Ifthemonomerfeedratioisclosetoazeotrope,thecompositiondoesnotchangegreatly;3.Ifthemonomerfeedratioisfarfromazeotrope,thecompositionwillchangegreatlyandnowell-proportionedcopolymer.Conclusion:(2)Copolymercompositioncontrolmethods(1).one-potmethodAsr1<1,r2<1andthecopolymercompositionoftargetcopolymerisclosetothatoftheazeotropiccopolymer,thenthemonomerpairscanbefedatonepotaccordingtothetargetratio.e.g.:AswewanttopreparePSAwithF1=0.55,St(r1=0.41)/AN(r2=0.04),wecanadoptone-potmethodbecauseF1’=0.62(2)Copolymercompositioncon(2)AddingthehighreactivitymonomermethodTarget:tokeepf1approachtof10method:A.half-batchaddingB.continuousadding(2)Addingthehighreactivity(a)(b)f10f10r1<1,r2<1,F1>f1,M1consumedquick,addingM1R1<1,r2<1,F1>f1,M2consumedquick,addingM2(a)(b)f10f10r1<1,r2<1,F1>f1,M1(c)f10f10F10F10c)r1>1,r2<1,normallyaddingM1,(F1>f1)d)r1<1,r2>1,normallyaddingM2,(F1<f1)(d)(c)f10f10F10F10c)r1>1,r2<1,no(3).ControlconversionmethodIfF1~Ccurvehasbeengotahead(suchas5-4,r1=0.3,r2=0.07),theazeotrope(F1)A=(f1)A=0.57(horizontalline)Curve3:Sincef10(=0.50)iscloseto(f1)A,F1slightlychangedwithC.BeforeC%reachto80~90%,stopthereaction;Curve4:f10=0.60andthesituationissimilarto3;Curve1:Sincef10(=0.20)isfarfrom(f1)A,F1changegreatlyatsmallC%.Thereactionshouldbekeptatlowconversion;Curve2:f10=0.80andthesituationissimilarto1.

Normallywecombinedbothmethod2and3!(3).ControlconversionmethodThecopolymerswithsamecompositionoftenhavedifferentmicrostructure.A.alternatingcopolymerB.bi-blockcopolymer

C.randomcopolymer(normalcase)D.graftcopolymerPart3MicrostructureandSequenceDistributionThecopolymerswithsamecompoSegmentlengthdistributionfunctionandaveragesegmentlengthByusingprobabilitymethod,theratioofdifferentlengthof(Ml)xand(M2)ysegmentsinmacro-chaincanbecalculate,whichisnamedasSegmentlengthdistribution.SegmentlengthdistributionfuSegmentlengthdistribution

1M12M14M12M13M1

~~M2

-M1

-M2-M1M1―M2―M1M1M1M1-M2M2-M1M1-M2-M1M1M1-M2~~CompetentreactionSegmentlengthdistributionReactionprobabilityP11and

P12is:P11+P12=1ReactionprobabilityP11andPsimilarlyP22+P21=1similarlyP22+P21=1TheprobabilitywhichformsxM1segment:from~~M2M1·tojoinwith(x-1)ofM1unitandthenwithM2unit

SegmentsequencenumberdistributionfunctionsimilarlyTheprobabilitywhichformsxMSegmentlengthsequenceweightdistributionfunction:theratioofmonomerunitinthechainstothetotalmonomerSegmentlengthsequenceweight

similarly:similarly:

ThenumberaveragelengthofxM1segment:TotalchainlengthTotalchainnubmbersThenumberaveragelengthof

similarlysimilarlyDiscusiononfigure5-6andtable5-3。condition:r1=5,r2=0.2,M1/M2=1TheprobabilityofdifferentlengthofM1sequence:1M1:(PM1)1=(5/6)0(1/6)=16.7%2M1:(PM1)2=(5/6)1(1/6)=13.9%3M1:(PM1)3=(5/6)2(1/6)=11.5%

………………Reftotable5-3andfigure5-6a.Discusiononfigure5-6andtaLengthofM1unit,NM1ProbabilityofxM1segment(PM1)x,%ThenumberofM1inxM1segmentx(PM1)x,%116.716.72.78213.927.84.63311.534.53.7549.639.46.0658.040.06.6766.6740.06.6775.5538.96.4984.6337.06.1793.8533.85.64103.2132.15.35200.5210.41.74300.0842.520.42400.01360.540.09500.00220.110.018…………

∑(PM1)x=100%∑x(PM1)x=600%=6100%LengthofM1unit,NM1ProbabilFigure5-5segmentdistribution(a)andunitdistribution(b)incopolymerabFigure5-5segmentdistributiFromfigure5-6a,wecanget,theshapeoffigureissimilartomolecularweightnumberdistributioncurvethemeaning:thepercentageofxM1segmentinΣxM1;16.7%of1M1…13.9%of2M1…8.0%of5M1………theratioof1M1segmentisthehighest,whichcanberefedtothehighestratioofx=1(monomer)inthemolecularweightnumberdistributioncurveFromfigure5-6a,wecanget,Accordingtotheprobabilitytheory,thecopolymercompositionratiod[M1]/d[M2]isthenubmer-averagedlengthratiobetweentwosegments.AccordingtotheprobabilitytPart4TheRateEquationofcopolymerizationInitiation,propagationandterminationTheeffectofterminationrateoncopolymerizationrate:Thechemicalcontrolledtermination;Thediffusioncontrolledtermination.Part4TheRateEquationofc5.4.1TherateequationofchemicalcontrolledterminationSincethedispearrateofmonomerisdeterminedbypropagation,theoverallpropagationrateisthesumoffourkindsofpropagation.5.4.1TherateequationofcTwokindsofsteadyasumption:1.Theconcentrationofallkindsofradicalsareinthesteadystate,then:2.Thetotalconcentrationofradicalskeepconstant,I.e.theinitiationrateequalstotheterminationrate:Ri=Rt=2kt11[M1·]2+2kt12[M1·][M2·]+2kt22[M2·]2Twokindsofsteadyasumptionφ>1isprefertothecrossterminationφ>1isprefertothecrosster5.4.2TherateequationofdiffusioncontrolledterminationTheterminationrateisdependsontheviscosityofsystemastheviscosityislow.Intheotherword,thechainterminationiscontrolledbychaindiffusionfromthelowconversionon.Therefore,thetotoalpropagationrateequationis:5.4.2Therateequationofdif(5-36)(5-36)Theterminationrateconstantcanberegardedasthefunctionofterminationrateconstantofhomopolymerizationasfellows,TheterminationrateconstEq.(6-29)Eq.(6-30)Figure5-7VAc-MMAsolventcopolymerization(60℃)Eq.(6-29)Eq.(6-30)Figure5-7VPart5ExperimentalEvaluationofreactivityratioItiskeytorecognize:

copolymercomposition,microstructuralsequencedistribution,copolymerizationrate,therelatedactivityofmonomerpairsDeterminationmethods:

Fromthedeterminationofcopolymercomposition,sequencedistributionandcopolymerizationconstanttotheevaluationofreactivityratio.Part5ExperimentalEvaluatio5.5.1Determinationmethodsofreactivityratio(1)FromthedeterminationofcopolymercompositionA.Atlowconversion(usually<5%or10%)B.Byusingthedifferentialequation(5-15)or(5-18)(5-18)5.5.1DeterminationmethodsofAthigherconversiontheintegralequation(5-23b)isusedinsteadofaboveequation:(5-23b)AthigherconversiontheintegTechniquesforcopolymeranalysis:elementalanalysisinfraredspectroscopyNMRGaschromatographyTechniquesforcopolymeranalyFromthedeterminationofsegmentlengthdistributionof(PM1)xand(PM2)xtocalculatethereactivityratioFromthedeterminationofsegmEssential:Toanalysisthemicrostructuredifferenceofbiadsortriadsandtetrads~M2M1M2M1M1M2M2M1M2M1M1M1M2M1M2M2M2M1M1M2~6kindsoftriads3kindsofbiads9kindsoftetradsEssential:Toanalysisthemicre.g.:ThecontentofM1M1M1,M1M1M2,M2M1M2canbedeterminedbyNMR,whicharenamedasA111,A112andA212,respectively.Byusingthefollowingequation,(PM1)3=A111/(A111+A112+A212)(PM1)2=A112/(A111+A112+A212)(PM1)1=A212/(A111+A112+A212)theP11andr1canbecalculatedaccordingtoeq.(6-22)and(6-18).Similarly,P22andr2areobtained.ThepeakscorrespondingtothedifferenttriadscanbeobservedbyNMRe.g.:ThecontentofM1M1M1,M1M

terminationiscontrolledbydiffusionrateterminationiscontrolledbybyusingsteady-stateassumption:(6-31)Kp,k11andk22canbeDeterminedbynonsteady-StatepolymerizationNon-steady-statepolymerization---pulsantlasertechniquebyusingsteady-stateassumpt5.5.2ReactivitycalculationmethodTodeterminethecopolymercompositionatlowconversion(1)curvefittingmethod(2)lineintersectionmethod(3)Fineman-Rossmethod(线性化法)5.5.2Reactivitycalculation

(1)curvefittingmethoddrawf1-F1curveaseriesofexperimentalf1/F1Comparedwiththecurvedrawbythepresetreactivities:r1、r2(1)curvefittingmethoddrawf1F1f1F1

(2)lineintersectionreset(5-15):(5-39)Thelineswiththevariablevalueofr1andr2Reftofigure5-8(2)lineintersectionreset(5-Figure5-8thereactivitybylineintersectionmethod,inwhichthecircularstandthemostreasonabler1andr2Figure5-8thereactivitybyByusingtheintegralcopolymercompositionequation:(5-40)Byusingtheintegralcopolyme(3)Fineman-Rossmethod(线性化法)set:x=[M1]/[M2]y=d[M1]/d[M2]eq.(5-39)isturnedinto:

(5-41a)(5-41b)(3)Fineman-Rossmethod(线性化法)Figure5-9thereactivityofallylchloride(M1)andVAc(M2)byFRequation

treatwitheq.(5-41b)treatwitheq.(5-41a)Figure5-9thereactivityofYezrielevYezrielev5.5.3Theinfluencefactorsofreactivityr=k11/k12,thefactorswhichinfluencethekarealsoinfluencerExtrafactors:reactioncondition、Temperature、Pressure、solventIntrafactor:structurefactors5.5.3Theinfluencefactorso(1)temperature

reactivityratio:r1=k11/k22,(5-42)Activeenergyofself-propagationActiveenergyofcross-propagationThesmalldatashowsthatthereactivityratioisnotgreatlyinfluencedbyreactivityratio(1)temperature(5-42)ActiveenA.RisnotgreatlyinfluencedbyT:Eisaslittleasc.a.20~35kJ/mol,E11-E12isevenlittle;B.r→1withTincreasesandtendstoidealcopolymerizationthatis,r1<1时,T↗,r↗→1r1>1时,T↗,r↘→1explanation:ifr1<1,thenk11<k12,E11>E12,WithT↗,k11↗>k12↗,thenk11/k12↗,ThereforeT↗,r1↗→1Thinkofthecaser1>1A.RisnotgreatlyinfluencedTable5-4theinfluenceoftemperatureonreactivityratioTable5-4theinfluenceoftem

(2)PressureSimilartotheinfluenceoftemperatureonreactivityratio,thecopolymerizationtendstoidealcopolymerizationwithpressureincreases.e.g.:ForthecopolymerizationofMMAandANat1,100,1000atm.,thecorresponding(r1·r2)valueis0.16,0.54and0.91respectively.(2)PressureSimilartoth

(3)thepolarityofsolventRadicalcopolymerization:slightlyinfluenceonr(table5-5)Ioniccopolymerization:greatlyinfluenceonpropagationrateandr,becausethepolarityofsolventinfluencethepropertiesofionpairs,theformsandtheratioofactivecenters.Table5-5thereactivityratioofstyrene(M1)-methylmethacrylate(M2)indifferentsolvent(3)thepolarityofsolventRad

(4)otherfactorsThepHofmedia:MAA/DMAEMA;ThesaltofLewisacid:InthepresenceofZnCl2,thecopolymerizationofStandMMAtendstotheidealcopolymerization.Polymerizationmethod:thecopolymerizationofstyreneandmetheneoxalicacid.(4)otherfactorsThepHofmedPart6theactivityofmonomerandQ,escheme1.Theexperimentalmethodsforcheckingtheactivityofmonomersandradicals;2.Theinfluenceofstructuralfactors,suchasresonanceeffectsandstericeffects,ontheactivityofmonomersandradicals;3.Q,eschemeisthebridgebetweentheactivityofmonomersandradicalsandcanbeestimatedthereactivityratioofmonomerpairs.Part6theactivityofmonomewecannotdistinguishtheactivityofmonomersandradicalsinthehomopolymerization.wecannotdistinguishtheac

Why?1)KpofpropagationisnotonlydependsonM,butalsoM*;2)therearelackoftheframeofreference.Why?5.6.1therelativeactivityofmonomersReciprocalofreactivityratio(1/r1)=k12/k11,Itstandfortheratioofthepropagationconstantofaradicalwithanothermonomertothatwithitsmothermonomer,Wecanuse1/r1tocomparetherelativeactivitywithaseriesofM25.6.1therelativeactivityThecopolymerizationof~~M1*withdifferentsecondmonomer:Thecopolymerizationof~~M1*wiTable5-6therelativeactivityofvinylmonomertovariouschainradicals(1/r1)BSMMAmethylvinylketoneANMAVDCVCVAcVAc*-10067202010104.41.0MMA*42.21.0-0.820.520.390.100.05S*1.71.01.40.540.0590.019Table5-6therelativeactiviThedatainthetableshowtheactivityofthemonomerstowardsthesameradicalTheactivityofmonomersinthetabledecreasefromthetoptotheend:

e.g.~~VAc*FortheconjugationsystemwiththeradicalsS*andB*,theactivityofsomemonomersisderegulation.ThedatainthetableshowtheConclusion:Theactivityofmonomerswithdifferentsubstitutegroupsareinthefollowingorder:

CH2=CHX:C6H5-,CH2=CH->-CN,-COR>-COOH,-COOR>-Cl>-OCOR,-R>-OR,-HTherelativeactivityofCH2=CHXshowstheinfluenceofXontheactivityofmonomers:

a)themonomerswithconjugationsubstitutegroup,suchasB,S,havethebiggestactivity.b)themonomerswithstrongelectron-attractedsubstitutegroup,suchasAN,MMA,alsohavegoodactivity.c)themonomerswithelectron-repulsionsubstitutegroup,suchasVAc、CH2=CHOR,hassmallestactivity.Conclusion:5.6.2therelativeactivityofradicalsfromr1=k11/k12andtheavailablekP、r1,wecancalculatek12=k11/r1=(kP/r1)(seetable5-7)K12,k1’2,k1’’2,showtherelativeactivityofseriesofradicalstowardssamemonomerM25.6.2therelativeactivityoTable5-7k12ofthereactionofchainradicalandmonomer(L·mol-1·s-1)B-

S-

MMA-

AN-

MA-

VAc-

VC-S4014515504900014000230000615000MA1302033671310209023000209000Table5-7k12ofthereactionthedataofrowsintable5-7showtherelativeactivityofseriesofradicalstowardssamemonomerE.g.thefirstrowshowstheactivityofseriesradicalstowardsmonomerBTheactivityofradicalsincreasefromlefttorightTherelationbetweentable5-6(1/r1)andtable5-7(k12=k11/r1):Thecolumnsintable5-7showtheactivityofseriesmonomertowardsthesameradicalthedataofrowsintable5-7Conclusion:1.theactivityofmonomersarereversetothatofradicals;2.theinfluenceofsubstitutegroupsontheactivityofmonomersandradicalsareindifferentextent--theinfluenceofradicals>thatofmonomerConclusion:

5.6.3Thestructuralfactorswhichinfluencetheactivityofmonomerstheinfluenceofsubstitutegroupofdoublebondontheactivityofmonomerandradical:

(1)conjugateeffect(2)polarityeffect(3)sterichindranceeffect5.6.3Thestructuralfactors

(1)conjugateeffectTheinfluenceofsubstitutegrouponmonomersisreversetothatofradicalsduetotheconjugateeffectIfXis-C6H5,-CH2=CH2

,itcanformp-πconjugatestructuralelectronpairwithradicals.Thestabilityofsystem↑Theactivityofmonomerislargeandthatofradicalissmall(1)conjugateeffectTheinfl

e.g.:theactivityofstyreneandbutadieneradicalislow,Whiletheirradicalsarehigh;Iftheconjugateeffectsof-OCOCH3groupofVacisweak,theactivityofVacislowandthatofVAc.*ishigh.e.g.:theactivityofstyrenePotentialenergyNewradical1.M*+M=D2.M*+Ms=D’MorsecurvedistanceActiva

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论