




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.2.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则点P到AD与BC的距离之和为().A.3 B.4 C.5 D.63.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a2﹣b2=(a﹣b)24.已知一组数据为2,3,5,7,8,则这组数据的方差为()A.3 B.4.5 C.5.2 D.65.如果一条直线经过不同的三点,,,那么直线经过()A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限6.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1 B.2 C.3 D.47.下列各式中是分式的是()A. B. C. D.8.如果把分式中的和都同时扩大2倍,那么分式的值()A.不变 B.扩大4倍 C.缩小2倍 D.扩大2倍9.下列四个交通标志中,轴对称图形是()A. B. C. D.10.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.11.中国首列商用磁浮列车平均速度为,计划提速,已知从地到地路程为360,那么提速后从甲地到乙地节约的时间表示为()A. B. C. D.12.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形,图2中,的大小是()A. B. C. D.二、填空题(每题4分,共24分)13.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示是_______。14.给出下列5种图形:①平行四边形②菱形③正五边形、④正六边形、⑤等腰梯形中,既是轴对称又是中心对称的图形有________个.15.中的取值范围为______________.16.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________
17.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求证:BE+CF=EF.18.若,,则=_________.三、解答题(共78分)19.(8分)如图,在中,,在上取一点,在延长线上取一点,且.证明:.(1)根据图1及证法一,填写相应的理由;证法一:如图中,作于,交的延长线于.(),()(),,()()(2)利用图2探究证法二,并写出证明.20.(8分)已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线n上取一点C,使BC=AB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图1,当点E在线段AC上,且∠AFE=30°时,求∠ABE的度数;(2)若点E是线段AC上任意一点,求证:EF=BE;(3)如图2,当点E在线段AC的延长线上时,若∠ABC=90°,请判断线段EF与BE的数量关系,并说明理由.21.(8分)解分式方程(1)(2)22.(10分)已知:如图,AB=AD,BC=ED,∠B=∠D.求证:∠1=∠1.23.(10分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.24.(10分)解下列方程:(1)(2)25.(12分)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进1.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.2米,乙组平均每天能比原来多掘进1.3米.按此旄工进度,能够比原来少用多少天完成任务?26.如图,已知直线1经过点A(0,﹣1)与点P(2,3).(1)求直线1的表达式;(2)若在y轴上有一点B,使△APB的面积为5,求点B的坐标.
参考答案一、选择题(每题4分,共48分)1、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【点睛】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.2、D【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.【详解】过P作PM⊥AD,PN⊥BC,由题意知AP平分∠BAD,∴PM=PE=3,同理PN=PE=3,∴PM+PN=6.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,平行线间的距离的定义,熟记性质并作辅助线构造出AD、BC间的距离的线段是解题的关键.3、A【解析】分析:(1)中的面积=a2-b2,(2)中梯形的面积=(2a+2b)(a-b)÷2=(a+b)(a-b),两图形阴影面积相等,据此即可解答.解答:解:由题可得:a2-b2=(a+b)(a-b).故选A.4、C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5,则方差=[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1.故选C.【点睛】此题考查方差,掌握方差公式是解题关键.5、A【分析】一条直线l经过不同的三点,先设直线表达式为:,,把三点代入表达式,用a,b表示k、m,再判断即可.【详解】设直线表达式为:,将,,代入表达式中,得如下式子:,由(1)(2)得:,得,与(3)相减,得,直线为:.故选:A.【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.6、D【分析】如图,①根据三角形的内角和即可得到∠DAE=∠F;②根据角平分线的定义得∠EAC=,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的面积公式即可得到S△AEB:S△AEC=AB:CA;④根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB.【详解】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.【点睛】本题考查的知识点是关于角平分线的计算,利用三角形的内角和定理灵活运用角平分线定理是解此题的关键.7、C【分析】根据分式的定义:分母中含有字母的式子逐项判断即可.【详解】解:式子、、都是整式,不是分式,中分母中含有字母,是分式.故选:C.【点睛】本题考查的是分式的定义,属于应知应会题型,熟知分式的概念是解题关键.8、D【分析】根据题意把原分式中的分别换成,2y代入原式,化简后再和原分式对比即可得到结论.【详解】解:把原分式中的分别换成,2y可得:,∴当把分式中的都扩大2倍后,分式的值也扩大2倍.故选D.【点睛】本题考查的是分式的基本性质的应用,熟记分式的基本性质并能用分式的基本性质进行分式的化简是解答本题的关键.9、C【解析】根据轴对称图形的定义:沿一条直线折叠后直线两边的部分能互相重合,进行判断即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误,故选C.【点睛】本题考查了轴对称图形,关键是能根据轴对称图形的定义判断一个图形是否是轴对称图形.10、D【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判断即可.【详解】A选项化成的不是乘积的形式,故本选项不符合题意;B选项是整式的乘法,不是因式分解,故本选项不符合题意;C.,故本选项不符合题意;D.,是因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解的判断,掌握因式分解的定义是解决此题的关键.11、A【分析】列式求得提速前后从甲地到乙地需要的时间,进一步求差得出答案即可.【详解】解:由题意可得:==故选A.【点睛】此题考查列代数式,掌握行程问题中的基本数量关系是解决问题的关键.12、B【分析】根据多边形内角和公式可求出∠ABC的度数,根据等腰三角形的性质求出∠BAC的度数即可.【详解】∵ABCDE是正五边形,∴∠ABC=×(5-2)×180°=108°,∵AB=BC,∴∠BAC=×(180°-108°)=36°,故选B.【点睛】本题考查了多边形内角和及等腰三角形的性质,熟练掌握多边形内角和公式是解题关键.二、填空题(每题4分,共24分)13、3.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000034m=3.4×10-6,
故答案为:3.4×10-6【点睛】此题考查科学记数法,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、2【分析】根据轴对称图形与中心对称图形的概念和平行四边形、菱形、正五边形、正六边形、等腰梯形的性质求解.【详解】解:①是中心对称图形;②为轴对称图形也为中心对称图形;③为轴对称图形;④为轴对称图形也为中心对称图形;⑤为轴对称图形.故答案为:2.【点睛】此题考查轴对称图形,中心对称图形.解题关键在于掌握当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.15、【分析】二次根式的被开方数是非负数,由此可得解.【详解】解:由题意得,解得,故答案为:【点睛】此题主要考查了二次根式有意义的条件,关键是掌握被开方数为非负数.16、DC=BC(答案不唯一)【分析】要说明△ABC≌△ADC,现有AB=AD,公共边AC=AC,需第三边对应相等,于是答案可得.【详解】解:∵AB=AD,AC=AC
∴要使△ABC≌△ADC可利用SSS判定,
故添加DC=BC(答案不唯一).
故答案为:BC=DC,(答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.17、证明见解析【详解】试题分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.试题解析:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB,∴BE=ED,同理CF=DF,∴BE+CF=ED+DF=EF.考点:①等腰三角形的判定与性质;②平行线的性质.18、21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【详解】解:,故答案为:21.【点睛】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.三、解答题(共78分)19、(1)等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS;全等三角形的对应边相等;AAS;全等三角形的对应边相等.(2)见解析.【分析】(1)根据证明过程填写相应理由即可;(2)过点D作DF∥AC交BC于P,就可以得出∠DFB=∠ACB,,就可以得出DF=EC,由BD=DF就可以得出结论..【详解】(1)证法一:如图中,作于,交的延长线于,,(等边对等角,对项角相等,等量代换),,,(AAS),(全等三角形的对应边相等),,,(AAS),(全等三角形的对应边相等),故答案为:等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS;全等三角形的对应边相等;AAS;全等三角形的对应边相等.(2)证法二:如图中,作交于,,,,,,,,,在和中,,,【点睛】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.20、(1)30°;(2)见解析;(3)EF=BE,见解析【分析】(1)根据平行线的性质得到∠FAB=∠ABC,根据三角形内角和定理解答即可;(2)以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,证明△AEB≌△MEF,根据全等三角形的性质证明;(3)在直线m上截取AN=AB,连接NE,证明△NAE≌△ABE,根据全等三角形的性质得到EN=EB,∠ANE=∠ABE,证明EN=EF,等量代换即可.【详解】(1)∵m∥n,∴∠FAB=∠ABC,∵∠BEF=∠ABC,∴∠FAB=∠BEF,∵∠AHF=∠EHB,∠AFE=30°,∴∠ABE=30°;(2)如图1,以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,∴EM=EA,∴∠EMA=∠EAM,∵BC=AB,∴∠CAB=∠ACB,∵m∥n,∴∠MAC=∠ACB,∠FAB=∠ABC,∴∠MAC=∠CAB,∴∠CAB=∠EMA,在△AEB和△MEF中,,∴△AEB≌△MEF(AAS)∴EF=EB;(3)EF=BE.理由如下:如图2,在直线m上截取AN=AB,连接NE,∵∠ABC=90°,∴∠CAB=∠ACB=45°,∵m∥n,∴∠NAE=∠ACB=∠CAB=45°,∠FAB=90°,在△NAE和△ABE中,,∴△NAE≌△ABE(SAS),∴EN=EB,∠ANE=∠ABE,∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°,∴∠ABE+∠EFA=180°,∴∠ANE+∠EFA=180°∵∠ANE+∠ENF=180°,∴∠ENF=∠EFA,∴EN=EF,∴EF=BE.【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定和性质、平行线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1)x;(2)无解.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:x﹣1=﹣1﹣2(x-2),去括号得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x,经检验x是分式方程的解;(2)去分母得:去括号得:x2+2x﹣x2﹣x+2=3,移项合并得:x=1,经检验x=1是增根,分式方程无解.【点睛】此题主要考查分式方程的求解,解题的关键是熟知分式方程的解法.22、见解析【分析】证明△ABC≌△ADE(SAS),得出∠BAC=∠DAE,即可得出∠1=∠1.【详解】解:证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠1=∠1.【点睛】本题考查了全等三角形的判定与性质,证明三角形全等是解题的关键.23、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.24、(1);(2)无解.【分析】(1)方程两边同时乘以最简公分母x(x-3),移项可得x的值,最后检验即可得答案;(2)方程两边同时乘以最简公分母(x-1)(x+2),解方程即可求出x的值,检验即可得答案.【详解】(1)最简公分母为去分母解得检验:当时,.∴原分式方程的解为(2)最简公分母为去分母解得:检验:当时,,∴不是原分式方程的解.∴原分式方程无解.【点睛】本题考查解分式方程,正确找出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论