杭州市建兰中学2022年九年级数学第一学期期末复习检测模拟试题含解析_第1页
杭州市建兰中学2022年九年级数学第一学期期末复习检测模拟试题含解析_第2页
杭州市建兰中学2022年九年级数学第一学期期末复习检测模拟试题含解析_第3页
杭州市建兰中学2022年九年级数学第一学期期末复习检测模拟试题含解析_第4页
杭州市建兰中学2022年九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.2.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<13.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.4.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A. B.C. D.5.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.6.关于的一元二次方程有一个根为,则的值应为()A. B. C.或 D.7.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是()A.100(1+2x)=150 B.100(1+x)2=150C.100(1+x)+100(1+x)2=150 D.100+100(1+x)+100(1+x)2=1508.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为()A.m>1 B.m≥1 C.m<1 D.m≤19.如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是()A. B. C. D.10.若关于的方程有实数根,则的取值范围是()A. B. C. D.11.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°12.下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④二、填空题(每题4分,共24分)13.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.14.如图在平面直角坐标系中,若干个半径为个单位长度、圆心角为的扇形组成一条连续的曲线,点从原点出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位,在弧线上的速度为每秒个单位长度,则秒时,点的坐标是_______;秒时,点的坐标是_______.15.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.16.两个函数和(abc≠0)的图象如图所示,请直接写出关于x的不等式的解集_______________.17.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.18.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.三、解答题(共78分)19.(8分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣1.,(1)求该反比例函数和一次函数的解析式;(2)连接ED,求△ADE的面积.20.(8分)(阅读)辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.性质:如图①,若,则点在经过,,三点的圆上.(问题解决)运用上述材料中的信息解决以下问题:(1)如图②,已知.求证:.(2)如图③,点,位于直线两侧.用尺规在直线上作出点,使得.(要求:要有画图痕迹,不用写画法)(3)如图④,在四边形中,,,点在的延长线上,连接,.求证:是外接圆的切线.21.(8分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)(1)试写出与之间的函数关系式;(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?22.(10分)(1)计算;(2)解不等式.23.(10分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用15m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m1.25.(12分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?26.数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式;(2)确定自变量的取值范围是(3)列出与的几组对应值.······(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为时,盒子的体积最大,最大值约为.(估读值时精确到)

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,则y=4×()=,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.2、D【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】∵双曲线y=,当x>2时,y随x的增大而减小,∴1-m>2,解得:m<1.故选:D.【点睛】本题考查了反比例函数的性质,解题的关键是找出1-m>2.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质,找出反比例函数系数k的正负是关键.3、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.4、A【分析】设半径OA绕轴心旋转的角度为n°,根据弧长公式列出方程即可求出结论.【详解】解:设半径OA绕轴心旋转的角度为n°根据题意可得解得n=54即半径OA绕轴心旋转的角度为54°故选A.【点睛】此题考查的是根据弧长,求圆心角的度数,掌握弧长公式是解决此题的关键.5、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.6、B【分析】把x=0代入方程可得到关于m的方程,解方程可得m的值,根据一元二次方程的定义m-2≠0,即可得答案.【详解】关于的一元二次方程有一个根为,且,解得,.故选B.【点睛】本题考查一元二次方程的解及一元二次方程的定义,使等式两边成立的未知数的值叫做方程的解,明确一元二次方程的二次项系数不为0是解题关键.7、B【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)1=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.8、C【分析】抛物线与轴有两个交点,则,从而求出的取值范围.【详解】解:∵抛物线与轴有两个交点∴∴∴故选:C【点睛】本题考查了抛物线与轴的交点问题,注:①抛物线与轴有两个交点,则;②抛物线与轴无交点,则;③抛物线与轴有一个交点,则.9、B【解析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【详解】解:由该图形类同正五边形,正五边形的圆心角是.根据旋转的性质,当该图形围绕点O旋转后,旋转角是72°的倍数时,与其自身重合,否则不能与其自身重合.由于108°不是72°的倍数,从而旋转角是108°时,不能与其自身重合.故选B.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10、D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:∵关于的方程有实数根∴故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.11、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.12、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【详解】①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.14、【分析】设第n秒时P的位置为Pn,P5可直接求出,根据点的运动规律找出规律,每4秒回x轴,P4n(4n,0),由2019=504×4+3,回到在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,P3(3,-),当t=2019时,OP2019=OP2016+OB,此时P2019点纵坐标与P3纵坐标相同,即可求.【详解】设n秒时P的位置为Pn,过P5作P5A⊥x轴于A,OP4=OP2+P2P4=4,P4(4,0),当t=5时,由扇形知P4P5=2,OP4=4,在Rt△P4P5A中,∠P5P4A=60º,则∠P4P5A=90º-∠P5P4A=60º=30º,P4A=P4P5=1,由勾股定理得PA=,OA=OP4+AP4=5,由点P在第一象限,P(5,),通过图形中每秒后P的位置发现,每4秒一循环,2019=504×4+3,回到相对在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,由P3在第四象限,则P3(3,-),当t=2019时,OP2019=OP2016+OB=4×504+3=2019,P2019点纵坐标与P3纵坐标相同,此时P2019坐标为(2019,-),秒时,点的坐标是(2019,-).故答案为:(5,),(2019,-).【点睛】本题考查规律中点P的坐标问题关键读懂题中的含义,利用点运动的速度,考查直线与弧线的时间,发现都用1秒,而每4秒就回到x轴上,由此发现规律便可解决问题.15、【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、或;【分析】由题意可知关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑.【详解】解:关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,观察图象的交点坐标可得:或.【点睛】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键.17、【分析】先求出第一个正方形ABCD的边长,再利用△OAD∽△BA1A求出第一个正方形的边长,再求第三个正方形边长,得出规律可求出第5个正方形的边长.【详解】∵点的坐标为,点的坐标为∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出规律,第n个正方形的边长为∴第5个正方形的边长为.【点睛】本题考查正方形的性质,相似三角形的判定和性质,勾股定理的运用,此题的关键是根据计算的结果得出规律.18、【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.【详解】解:假设圆与下轴的另一交点为D,连接BD,∵,∴BD为直径,,∵点,∴OB=2,∴,∵OB为和公共边,∴,∴.故答案为:.【点睛】本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.三、解答题(共78分)19、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根据题意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;

(2)求得两个三角形的面积,然后根据S△ADE=S△ACE+S△DCE即可求得.【详解】(1)∵AE⊥x轴于点E,点C是OE的中点,且点A的横坐标为﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直线y=ax+b(a≠0)与x轴、y轴分别交于C、D两点,∴,解得,∴一次函数的解析式为y=﹣x﹣3,把点A的坐标(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函数解析式为y=﹣;(2)S△ADE=S△ACE+S△DCE=EC•AE+EC•OD=×2×3+=2.20、(1)见解析;(2)见解析;(3)见解析【分析】(1)作以为圆心,为半径的圆,根据圆周角性质可得;(2)作以AB中点P为圆心,为半径的圆,根据圆周角定理可得;(3)取的中点,则是的外接圆.由,可得点在的外接圆上.根据切线判定定理求解.【详解】(1)如图,由,可知:点,,在以为圆心,为半径的圆上.所以,.(2)如图,点,就是所要求作的点.(3)如图,取的中点,则是的外接圆.由,可得点在的外接圆上.∴.∵,∴.∵,∴.∴.即.∴是外接圆的切线.【点睛】考核知识点:多边形外接圆.构造圆,利用圆周角等性质解决问题是关键.21、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.【分析】(1)销售单价为x元,先用x表示出年销售量,再利用每件产品销售利润×年销售量=年获利列出函数解答;(2)把(1)中所得的二次函数,利用配方法得到顶点式,然后进行判断,即可得到答案.【详解】解:(1)由题意知,当销售单价定为元时,年销售量减少万件,∴,∴与之间的函数关系式是:.由题意得:,∴与之间的函数关系是:.(2)∵,∵,∴当时,取最大值,为,∴当销售单价为180元,年获利最大,并且第一年年底公司还差40万元就可收回全部投资;∴到第一年年底公司亏了40万元.【点睛】此题考查了二次函数的性质,二次函数的应用问题,配方法的运用,解题的关键是熟练掌握题意,正确找到题目的数量关系,列出关系式.22、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.23、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解即可;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,先求出S△OAC=6,再根据S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式为,则可得点G的坐标为,由此可得,再根据S△BCD=S△CDG+S△BDG=,可得关于m的方程,解方程即可求得答案;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,由点D的坐标可得点N点纵坐标为±,然后分点N的纵坐标为和点N的纵坐标为两种情况分别求解;以BD为对角线时,有1种情况,此时N1点与N2点重合,根据平行四边形的对边平行且相等可求得BM1=N1D=4,继而求得OM1=8,由此即可求得答案.【详解】(1)抛物线经过点A(-2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(-2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.24、可以围成AB的长为15米,BC为10米的矩形【解析】解:设AB=xm,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论