版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在中,,,,则等于()A. B. C. D.2.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.3.如图,菱形中,,,且,连接交对角线于.则的度数是()A.100° B.105° C.120° D.135°4.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm5.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位6.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于27.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠18.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣369.如图,半径为3的经过原点和点,是轴左侧优弧上一点,则为()A. B. C. D.10.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是()A.平均数 B.众数 C.方差 D.中位数11.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25° B.30° C.40° D.60°12.如图,A、B、C是⊙O上的三点,已知∠O=50°,则∠C的大小是()A.50° B.45° C.30° D.25°二、填空题(每题4分,共24分)13.如图,圆的直径垂直于弦,垂足是,,,的长为__________.14.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′的度数是______________.15.某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是_______.16.如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,对称轴与x轴交于点D,若点P为y轴上的一个动点,连接PD,则的最小值为________.17.二次函数(a,b,c为常数且a≠0)中的与的部分对应值如下表:013353现给出如下四个结论:①;②当时,的值随值的增大而减小;③是方程的一个根;④当时,,其中正确结论的序号为:____.
18.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.三、解答题(共78分)19.(8分)如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.(1)求证:是的切线;(2)求证:是等腰三角形;(3)若,,求的值及的长.20.(8分)关于x的方程的解为正数,且关于y的不等式组有解,求符合题意的整数m.21.(8分)(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.22.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.23.(10分)尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆⊙O;(2)若AC=4,∠B=30°,则△ABC的外接圆⊙O的半径为.24.(10分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.25.(12分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.26.二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.2、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.3、B【分析】由菱形及菱形一个内角为60°,易得△ABC与△ACD为等边三角形.由三线合一的性质求得∠ACE的度数.证得△BCE是等腰直角三角形,可求出∠CBE度数,用三角形外角的性质即可求得∠AFB.【详解】∵菱形ABCD中,∠ABC=60°,∴AB=BC=CD=AD,∠ADC=∠ABC=60°,∴△ABC、△ACD是等边三角形,∵CE⊥AD,
∴∠ACE=∠ACD=30°,
∴∠BCE=∠ACB+∠ACE=90°
∵CE=BC,∴△BCE是等腰直角三角形,
∴∠E=∠CBE=45°
∴∠AFB=∠CBE+∠ACB=45°+60°=105°,
故选:B.【点睛】本题考查了菱形的性质,等腰三角形的性质,三角形外角的性质.证得△BCE是等腰直角三角形是解题的关键.4、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.5、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.6、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.7、C【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8、B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.9、B【分析】连接CA与x轴交于点D,根据勾股定理求出OD的长,求出,再根据圆心角定理得,即可求出的值.【详解】设与x轴的另一个交点为D,连接CD∵∴CD是的直径∴在中,,根据勾股定理可得∴根据圆心角定理得∴故答案为:B.【点睛】本题考查了三角函数的问题,掌握圆周角定理、勾股定理、锐角三角函数的定义是解题的关键.10、D【分析】根据中位数的定义即位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数进行分析即可.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点睛】本题考查统计量的选择,解题的关键是了解中位数的定义,难度较小.11、B【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【详解】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣60°=30°.故选:B.【点睛】本题主要考察旋转的性质,解题关键是判断出△ABB1为等边三角形.12、D【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠C与∠AOB是同弧所对的圆周角与圆心角,
∵∠AOB=2∠C=50°,
∴∠C=∠AOB=25°.
故选:D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】根据圆周角定理得,由于的直径垂直于弦,根据垂径定理得,且可判断为等腰直角三角形,所以,然后利用进行计算.【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14、105°【分析】根据旋转的性质得AB′=AB,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠C′AB′=75°,于是得到结论.【详解】解:∵△ABC绕点A逆时针旋转到△AB′C′,
∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,
∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′
∵BB'∥AC,
∴∠AB′B=∠C′AB′=75°,
∴∠C′AC=∠B′AB=180°-2×75°=30°,
∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案为:105°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.15、【分析】根据题意列举出所有情况,并得出两球颜色相同的情况,运用概率公式进行求解.【详解】解:一次摸出两个球的所有情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)6种,其中两球颜色相同的有2种.所以得奖的概率是.故答案为:.【点睛】本题考查概率的概念和求法,熟练掌握概率的概念即概率=所求情况数与总情况数之比和求法是解题的关键.16、【分析】连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.由锐角三角函数的知识可知PC=PE,然后通过证明△CDO∽△AED,利用相似三角形的性质求解即可.【详解】解:连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.当x=0时,y=3,∴C(0,3).当y=0时,0=-x2+2x+3,∴x1=3,x2=-1,∴A(-1,0)、B(3,0),∴OA=1,OC=3,∴AC=,∵二次函数y=-x2+2x+3的对称轴是直线x=1,∴D(1,0),∴点A与点D关于y轴对称,∴sin∠ACO=,由对称性可知,∠ACO=∠OCD,PA=PD,CD=AC=,∴sin∠OCD=,∵sin∠OCD=,∴PC=PE,∵PA=PD,∴PC+PD=PE+PA,∵∠CDO=∠ADE,∠COD=AED,∴△CDO∽△AED,∴,∴,∴;故答案为.【点睛】本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,锐角三角函数的知识,勾股定理,轴对称的性质,相似三角形的判定与性质等知识,难度较大,属中考压轴题.17、①②③④【分析】先利用待定系数法求得的值,<0可判断①;对称轴为直线,利用二次函数的性质可判断②;方程即,解得,可判断③;时,;当时,,且函数有最大值,则当时,,即可判断④.【详解】∵时,时,时,∴,解得:,∴,故①正确;
∵对称轴为直线,∴当x>时,y的值随x值的增大而减小,故②正确;方程即,解得,∴是方程的一个根,故③正确;当时,,
当时,,∵,∴函数有最大值,
∴当时,,故④正确.
故答案为:①②③④.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数图象的性质是解题的关键.18、y=x-,【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4-x,则,解得,x=,∴点B的坐标为,设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=.故答案为:y=.【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.三、解答题(共78分)19、(1)见解析;(2)见解析;(3),【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB∽△ADC,由相似三角形的对应边成比例,求CB的值,然后求求的值;连结BE,在Rt△FEB和Rt△AEB中,利用勾股定理来求EF即可.【详解】解:(1)如图1,连结,是的直径,,又点是的中点,.,又是的切线图1(2)四边形内接于,.,即是等腰三角形(3)如图2,连结,设,,在中,,由(1)可知,又,在中,,,是的直径,,即解得图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.20、m的值是-1或1或2或3或4或5【分析】根据题意先求出方程的解与不等式组的解集,再根据题目中的要求,求出相应的m的值即可.【详解】解:解分式方程得:∵x为正数解得由不等式组有解得:整数m的值是-1或1或2或3或4或5.【点睛】本题考查分式方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.21、(1);(2)a=8,b=12【分析】(1)代入特殊角的三角函数值,根据二次根式的运算法则计算即可;(2)设=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【详解】(1)原式==1+=;(2)设=k,即a=2k,b=3k,代入a+b=20,得2k+3k=20,∴k=4,∴a=8,b=12.【点睛】本题考查了特殊角的三角函数值,实数的混合运算,比例的性质,熟练掌握各知识点是解答本题的关键.22、证明见解析.【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.23、(1)答案见解析;(2)1.【分析】(1)确定三角形的外接圆的圆心,根据其是三角形边的垂直平分线的交点进行确定即可;(2)连接OA,OC,先证明△AOC是等边三角形,从而得到圆的半径.【详解】解:(1)作法如下:①作线段AB的垂直平分线,②作线段BC的垂直平分线,③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆;(2)连接OA,OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∵AC=1,∴OA=OC=1,即圆的半径是1,故答案为1.【点睛】本题考查了尺规作三角形外接圆、圆中的计算问题,解题的关键是熟知“三角形边的垂直平分线的交点是三角形的外接圆的圆心”.24、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精准识别课件教学课件
- 智慧养老中心解决方案
- 颈椎病解刨结构
- 2024年超高速加工中心投资项目资金申请报告书
- 车场停电应急预案
- 第六章 机械能守恒定律-功能关系与能量守恒 2025年高考物理基础专项复习
- 2-1-4 微专题1-碳酸钠与碳酸氢钠的相关计算 高一上学期化学人教版(2019)必修第一册
- 骨水泥在糖尿病足的应用
- 医疗器械合作协议书范本
- 社交网络钩机租赁合同
- 《乡土中国》整本书阅读公开课
- 气排球比赛规则课件
- NB/T 11123-2023煤矿安全双重预防机制规范
- 人美版小学美术六年级上册1建筑艺术的美课件
- 氧气瓶安全操作技术规程
- 高二期中家长会ppt
- 2023年05月重庆市渝北区洛碛镇上半年公开招录8名村专职干部笔试历年高频考点试题含答案详解
- 区块链技术与应用学习通课后章节答案期末考试题库2023年
- 2022年铜仁市国企招聘考试真题及答案
- 手术室专科护士培训计划范文(2篇)
- 中药材中药饮片采购管理制度201556
评论
0/150
提交评论