版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、62.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位3.已知分式的值为0,则的值是().A. B. C. D.4.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.5.将抛物线向左平移2个单位后所得到的抛物线为()A. B.C. D.6.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°7.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是()A.圆可以经过点 B.点可以在圆的内部C.点可以在圆的内部 D.点可以在圆的内部8.下列各点中,在反比例函数图像上的是()A. B. C. D.9.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长10.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.11.老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁12.下面哪个图形不是正方体的平面展开图()A. B.C. D.二、填空题(每题4分,共24分)13.如图,点是矩形的对角线上一点,正方形的顶点在边上,则的值为__________.14.若关于的一元二次方程没有实数根.化简:=____________.15.已知抛物线,如果把该抛物线先向左平移个单位长度,再作关于轴对称的图象,最后绕原点旋转得到新抛物线,则新抛物线的解析式为______.16.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).17.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.18.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.三、解答题(共78分)19.(8分)某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内。小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.20.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.21.(8分)已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.22.(10分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;(2)当点在上时.①求证:;②如图2,在上取一点,使,连结.求证:;(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.23.(10分)已知y是x的反比例函数,且当时,.(1)求y关于x的函数解析式;(2)当时,求y的值.24.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25.(12分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点.(1)求反比例函数的解析式;(2)求的值.26.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.
参考答案一、选择题(每题4分,共48分)1、D【详解】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.2、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.3、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.4、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5、D【分析】根据抛物线的平移规律“上加下减,左加右减”求解即可.【详解】解:将抛物线向左平移2个单位后所得到的抛物线为:.故选D.【点睛】本题考查了抛物线的平移,属于基础知识,熟知抛物线的平移规律是解题的关键.6、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,
∴α=90°-38°=52°.
故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.7、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为∴点C可以在圆的内部,故A错误,B正确;∵过点B、C的圆记作为圆∴点A可以在圆的外部,故C错误;∴点B可以在圆的外部,故D错误.故答案为B.【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.8、C【分析】把每个点的坐标代入函数解析式,从而可得答案.【详解】解:当时,故A错误;当时,故B错误;当时,故C正确;当时,故D错误;故选C.【点睛】本题考查的是反比例函数图像上点的坐标特点,掌握以上知识是解题的关键.9、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.10、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.11、D【分析】观察每一项的变化,发现甲将老师给的式子中等式右边缩小两倍,到了丁处根据丙的式子得出了错误的顶点坐标.【详解】解:,可得顶点坐标为(-1,-6),根据题中过程可知从甲开始出错,按照此步骤下去到了丁处可得顶点应为(1,-3),所以错误的只有甲和丁.故选D.【点睛】本题考查了求二次函数的顶点坐标和配方法,解题的关键是掌握配方法化顶点式的方法.12、A【分析】根据正方体展开图的11种形式,对各选项分析判断即可得解.【详解】解:A、不是正方体展开图,符合题意;B、是正方体展开图,不符合题意;C、是正方体展开图,不符合题意;D、是正方体展开图,不符合题意.故选:A.【点睛】本题主要考查了正方体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二、填空题(每题4分,共24分)13、【分析】先证明△AHE∽△CBA,得到HE与AH的倍数关系,则可知GF与AG的倍数关系,从而求解tan∠GAF的值.【详解】∵四边形是正方形,∴,∵∠AHE=∠ABC=90°,∠HAE=∠BCA,
∴△AHE∽△CBA,∴,即,设,则A,
∴,
∴.故答案为:.【点睛】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形.利用参数求解是解答本题的关键.14、【分析】首先根据关于x的一元二次方程没有实数根求出a的取值范围,然后利用二次根式的基本性质化简即可.【详解】解:∵关于的一元二次方程没有实数根,∴,解得,当时,原式,故答案为:.【点睛】本题考查了一元二次方程的根的判别式及二次根式的基本性质,解题的关键是根据根的判别式确定未知数的取值范围.15、【分析】由抛物线的顶点为(0,0),然后根据平移的性质,轴对称的性质,以及旋转的性质即可得到答案.【详解】解:∵抛物线的顶点坐标为(0,0),图像开口向上,∴向左平移个单位长度,则顶点为:(),∴关于轴对称的图象的顶点为:(2,0),∴绕原点旋转得到新抛物线的图像的顶点为(),且图像开口向下;∴新抛物线的解析式为:.故答案为:.【点睛】本题考查了二次函数图象与几何变换,解的关键是熟练掌握旋转的性质、轴对称的性质和平移的性质.16、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.17、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【详解】解:点M,N分别是AB,BC的中点,,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,,,,,故答案为:.【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大.18、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.三、解答题(共78分)19、【分析】根据题意先画树状图展示所有9种等可能的结果数,再找出两次得分的总分不小于5分的结果数,然后根据概率公式求解.【详解】解:树状图如下:共有9种等可能的结果数,两次得分的总分不小于5分的结果数为3种,所以P=.【点睛】本题考查列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.21、y=-x2+4x+2.【分析】根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,最后利用点A、B两点的坐标求抛物线的解析式.【详解】(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=1,∴直线的解析式为y=﹣4x+1.∵点A(5,n)在直线y=﹣4x+1上,∴n=﹣4×5+1=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+2.【点睛】本题考查了利用待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.22、(1)(0,4);(2)①详见解析;②详见解析;(3)不变,为.【分析】(1)连结,在中,为圆的半径5,,由勾股定理得(2)①根据圆的基本性质及圆周角定理即可证明;②根据等腰三角形的性质得到,根据三角形的外角定理得到,由①证明得到,即可根据相似三角形的判定进行求解;(3)分别求出点C在B点时和点C为直径AC时,的值,即可比较求解.【详解】(1)连结,在中,=5,,∴∴A(0,4).(2)连结,故,则∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴∵与是弧所对的圆周角∴=又∴即②∵∴∵,且由(2)得∴∴在与中∴(3)①点C在B点时,如图,AC=2AO=8,BC=0,CD=BD=∴==;当点C为直径AC与圆的交点时,如图∴AC=2r=10∵O,M分别是AB、AC中点,∴BC=2OM=6,∴C(6,-4)∵D(8,0)∴CD=∴==故的值不变,为.【点睛】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.23、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;
(2)直接利用x=1代入求出答案.【详解】解:(1)∵y是x的反比例函数,∴设y=,当x=-2时,y=8,∴k=(-2)×8=-16,∴y=;(2)当x=1时,代入,y=-16÷1=-1.【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.24、(1)4800元;(2)降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.25、(1);(2).【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由C为OA的中点可表示出点C的坐标,根据C、D点在反比例函数图象上可得出关于k、m的二元一次方程租,解方程组即可得出结论;
(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,从而得出△OAB为等腰直角三角形,最后得出结果.【详解】解:(1)设点的坐标为,则点的坐标为.点为线段的中点,点的坐标为.点均在反比例函数的图象上,,解得,反比例函数的解析式为;(2),点的坐标为,,∴△OAB是等腰直角三角形,.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级物理下册《7.1力》同步测试题有答案
- 云南省昭通市2024年中考模拟预测数学模拟预测题附答案
- 科学育种技术优化作物抗病虫害能力
- 继续教育八大员施工员(设备安装)考试题目+答案资料
- 中国粮食生产现状及需求预测
- 高一化学巩固练习:第一章从实验学化学全章复习与巩固提高
- 2024届金昌市重点中学高考仿真卷化学试卷含解析
- 2024高中地理第2章区域可持续发展第5节矿产资源合理开发和区域可持续发展学案湘教版必修3
- 2024高中物理第三章传感器第一节认识传感器第二节传感器的原理达标作业含解析粤教版选修3-2
- 2024高中语文第5单元庄子蚜第5课恶乎往而不可训练含解析新人教版选修先秦诸子蚜
- 新概念英语第一册Lesson103-104笔记(语法点+配套练习+答案)
- 2024年河南农业职业学院单招职业适应性测试题库及参考答案
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 养老院健康档案模板
- (2024年)电工安全培训(新编)课件
- mil-std-1916抽样标准(中文版)
- 2024年安徽省合肥市瑶海区中考语文一模试卷
- 单位车辆变更名称的委托书
- 粉尘外协单位清理协议书
- 2023年12月首都医科大学附属北京中医医院面向应届生招考聘用笔试近6年高频考题难、易错点荟萃答案带详解附后
- 机电设备故障诊断与维修(高职)全套教学课件
评论
0/150
提交评论