版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动2.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.103.在同一平面直角坐标系中,若抛物线与关于y轴对称,则符合条件的m,n的值为()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-24.在反比例函数的图象的每一条曲线上,都随的增大而减小,则的取值范围是()A. B. C. D.5.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.6.已知二次函数()的图象如图,则下列说法:①;②该抛物线的对称轴是直线;③当时,;④当时,;其中正确的个数是()A.4 B.3 C.2 D.17.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.8.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.19.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.1210.若反比例函数的图象经过点,则这个函数的图象一定还经过点()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.12.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为__________.13.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.14.矩形的对角线长13,一边长为5,则它的面积为_____.15.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为____________.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为_____.17.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.18.已知△ABC与△DEF相似,相似比为2:3,如果△ABC的面积为4,则△DEF的面积为_____.三、解答题(共66分)19.(10分)抛物线的顶点为,且过点,求它的函数解析式.20.(6分)如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.(1)求证:PC是⊙O的切线;(2)若∠BAC=45°,AB=4,求PC的长.21.(6分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.(1)求S与x的函数关系式及x值的取值范围;(1)要围成面积为45m1的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?22.(8分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.23.(8分)如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.24.(8分)近年来,无人机航拍测量的应用越来越广泛.如图,无人机从A处观测得某建筑物顶点O时俯角为30°,继续水平前行10米到达B处,测得俯角为45°,已知无人机的水平飞行高度为45米,则这栋楼的高度是多少米?(结果保留根号)25.(10分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.26.(10分)已知二次函数y=ax2﹣2ax+k(a、k为常数,a≠0),线段AB的两个端点坐标分别为A(﹣1,2),B(2,2).(1)该二次函数的图象的对称轴是直线;(2)当a=﹣1时,若点B(2,2)恰好在此函数图象上,求此二次函数的关系式;(3)当a=﹣1时,当此二次函数的图象与线段AB只有一个公共点时,求k的取值范围;(4)若k=a+3,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于0的偶数时,直接写出k的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.
故选:B.【点睛】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.2、B【解析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.本题解析:x²-4x+3=0(x−3)(x−1)=0,x−3=0或x−1=0,所以x₁=3,x₂=1,当三角形的腰为3,底为1时,三角形的周长为3+3+1=7,当三角形的腰为1,底为3时不符合三角形三边的关系,舍去,所以三角形的周长为7.故答案为7.考点:解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质3、D【解析】由两抛物线关于y轴对称,可知两抛物线的对称轴也关于y轴对称,与y轴交于同一点,由此可得二次项系数与常数项相同,一次项系数互为相反数,由此可得关于m、n的方程组,解方程组即可得.【详解】关于y轴对称,二次项系数与常数项相同,一次项系数互为相反数,∴,解之得,故选D.【点睛】本题考查了关于y轴对称的抛物线的解析式间的关系,弄清系数间的关系是解题的关键.4、C【分析】根据反比例函数的性质,可得出1-m>0,从而得出m的取值范围.【详解】∵反比例函数的图象的每一条曲线上,y都随x的增大而减小,∴1-m>0,解得m<1,故答案为m<1.【点睛】本题考查了反比例函数的性质,当k>0时,在每个象限内,y都随x的增大而减小;当k<0时,在每个象限内,y都随x的增大而增大.5、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.【点睛】此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.6、B【分析】由题意根据二次函数图像的性质,对所给说法进行依次分析与判断即可.【详解】解:∵抛物线与y轴交于原点,∴c=0,故①正确;∵该抛物线的对称轴是:,∴该抛物线的对称轴是直线,故②正确;∵,有,,∴当时,,故③错误;∵,则有,由图像可知时,,∴当时,,故④正确.故选:B.【点睛】本题考查二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.7、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.8、D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.9、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【点睛】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.10、A【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.【详解】解:∵反比例函数的图象经过点,∴;∵,故A符合题意;∵,,,故B、C、D不符合题意;故选:A.【点睛】本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.二、填空题(每小题3分,共24分)11、k≤5且k≠1.【解析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.12、【分析】设定期一年的利率是,则存入一年后的本息和是元,取3000元后余元,再存一年则有方程,解这个方程即可求解.【详解】解:设定期一年的利率是,根据题意得:一年时:,取出3000后剩:,同理两年后是,即方程为,解得:,(不符合题意,故舍去),即年利率是.故答案为:10%.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和本金利率期数),难度一般.13、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.14、1【分析】先运用勾股定理求出另一条边,再运用矩形面积公式求出它的面积.【详解】∵对角线长为13,一边长为5,∴另一条边长==12,∴S矩形=12×5=1;故答案为:1.【点睛】本题考查了矩形的性质以及勾股定理,本题关键是运用勾股定理求出另一条边.15、【分析】设腰长为x,则正八边形边长2-2x,根据勾股定理列方程,解方程即可求出正八边形的边.【详解】割掉的四个直角三角形都是等腰直角三角形,设腰长为x,则正八边形边长2-2x,,(舍),,.故答案为:.【点睛】本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.16、π【分析】根据图示知,所以根据弧长公式求得的长.【详解】根据图示知,,∴的长为:.故答案为:.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17、1【分析】设AB=a,根据平行四边形的性质分别求出弧长EF与弧长BE,即可求出的值.【详解】设AB=a,∵∴AD=1.5a,则DE=0.5a,∵平行四边形中,,∴∠D=120°,∴l1弧长EF==l2弧长BE==∴==1故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.18、1【解析】由△ABC与△DEF的相似,它们的相似比是2:3,根据相似三角形的面积比等于相似比的平方,即可得它们的面积比是4:1,又由△ABC的面积为4,即可求得△DEF的面积.【详解】∵△ABC与△DEF的相似,它们的相似比是2:3,
∴它们的面积比是4:1,
∵△ABC的面积为4,
∴△DEF的面积为:4×=1.
故答案为:1.【点睛】本题考查的知识点是相似三角形的性质,解题关键是掌握相似三角形的面积比等于相似比的平方定理.三、解答题(共66分)19、【分析】已知抛物线的顶点,故可设顶点式,由顶点可知,将点代入即可.【详解】解:设将点代入得解得所以【点睛】本题考查了抛物线的解析式,由题中所给点的特征选择合适的抛物线的解析式的设法是解题的关键.20、(1)见解析;(2)2【分析】(1)根据切线的性质得到∠PAB=90°,根据等腰三角形的性质得到∠OAC=∠OCA,求得PC⊥CO,根据切线的判定定理即可得到结论;(2)连接BC,先根据△ACB是等腰直角三角形,得到AC和,从而推出△PAC是等腰直角三角形,根据等腰直角三角形的性质即可得到PC的值.【详解】(1)连接CO,∵PA是⊙O的切线,∴∠PAB=90°,∵OA=OC,∴∠OAC=∠OCA,∵PC=PA,∴∠PAC=∠PCA,∴∠PCO=∠PCA+∠ACO=∠PAC+∠OAC=∠PAB=90°,∴PC⊥CO,∵OC是半径∴PC是⊙O的切线;(2)连接BC,为⊙O直径,,,,,【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和等腰直角三角形的性质.21、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.22、(1)①(6,),②(3,);(2)【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE=,∴OE=OA-AE=6-3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②(3,3);(2)①当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,∴,∴EF=此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x)∴.当3<x≤5时,如图AQ=OIIOOA=x36=x3AH=(x3)S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣∴.③当5<x≤9时,如图∵CE∥DP∴∴∴S=(BE+OA)•OC=(12﹣)∴.④当x>9时,如图∵AH∥PI∴∴∴S=OA•AH=.综上:.【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.23、(1)如图所示,△A1B1O即为所求;见解析;(2)线段AO旋转时扫过的面积为.【分析】(1)根据题意,画出图形即可;(2)先根据勾股定理求出AO,再根据扇形的面积公式计算即可.【详解】解:(1)根据题意,将△OAB绕点O顺时针旋转90°,如图所示,△A1B1O即为所求;(2)根据勾股定理:线段AO旋转时扫过的面积为:=.【点睛】此题考查的是图形的旋转和求线段旋转时扫过的面积,掌握图形旋转的性质和扇形的面积公式是解决此题的关键.24、40﹣5【分析】过O点作OC⊥AB的延长线于C点,垂足为C,设OC=BC=x,则AC=10+x,利用正切值的定义列出x的方程,求出x的值,进而求出楼的高度.【详解】过O点作OC⊥AB的延长线于C点,垂足为C,根据题意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,设OC=BC=x,则AC=10+x,在Rt△ACO中,,解得:x=5+5,则这栋楼的高度(米).【点睛】本题考查解直角三角形的应用-仰角、俯角的问题以及解直角三角形方法,解题的关键是从实际问题中构造出直角三角形.25、证明见解析【解析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,,.方法二:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC+∠EAO,∴∠CAO=∠AEC,在中,∴∠ACO=∠CAO,∴∠ACO=∠AEC,,,.方法三:连接AD,OC,OD,∵AC=DB,=,∴∠ADC=∠DAB,∴CD∥AB,∴∠AEC=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管风琴项目运营指导方案
- 电动干衣机市场发展前景分析及供需格局研究预测报告
- 人脸识别与机器学习行业经营分析报告
- 电解水制氢氧设备项目运营指导方案
- 5G无人飞行器行业经营分析报告
- 厨房洗涤槽出租行业营销策略方案
- 修指甲工具产品供应链分析
- 纹章牌纸封签市场分析及投资价值研究报告
- 福建宁德五校2024-2025学年高三上学期11月期中考试英语试题 (解析版)
- 发光信号灯塔产品供应链分析
- 部编版《道德与法治》二年级上册第9课《这些是大家的》课件(共50张课件)
- 知道智慧网课《科技伦理》章节测试答案
- 国家开放大学《中文学科论文写作》形考任务1-4参考答案
- 2024年纳税服务条线专业知识考试题库(含答案)
- 高处作业吊篮危险源辨识及风险评价表
- 世界各国国家代号、区号、时差
- 新课标-人教版数学六年级上册第四单元《比》单元教材解读
- 全国高中青年数学教师优质课大赛一等奖《函数的单调性》课件
- 附件1保育实习个案观察记录
- DB∕T29-297-2021 海绵城市雨水控制与利用工程施工及验收标准
- GB∕T 16754-2021 机械安全 急停功能 设计原则
评论
0/150
提交评论