版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.52.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、、、、为顶点的多边形为正五边形,且,则()A. B. C. D.3.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.4.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.85.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或7.设,,则()A. B.C. D.8.若、满足约束条件,则的最大值为()A. B. C. D.9.设,则()A. B. C. D.10.若变量,满足,则的最大值为()A.3 B.2 C. D.1011.已知函数的定义域为,则函数的定义域为()A. B.C. D.12.复数满足为虚数单位),则的虚部为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知全集为R,集合,则___________.14.已知平面向量,,且,则向量与的夹角的大小为________.15.已知函数,若在定义域内恒有,则实数的取值范围是__________.16.函数的值域为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82818.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.19.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.20.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.21.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.22.(10分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【题目详解】利用表格中数据,可得又,.解得故选:D【答案点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.2.A【答案解析】
利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【题目详解】解:.故选:A【答案点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.3.D【答案解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【题目详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【答案点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.4.C【答案解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【题目详解】解:由,得所以集合的真子集个数为个.故选:C【答案点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.5.B【答案解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【答案点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.6.C【答案解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【题目详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.7.D【答案解析】
由不等式的性质及换底公式即可得解.【题目详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【答案点睛】本题考查了不等式的性质及换底公式,属基础题.8.C【答案解析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.9.C【答案解析】试题分析:,.故C正确.考点:复合函数求值.10.D【答案解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【题目详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.11.A【答案解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.12.C【答案解析】
,分子分母同乘以分母的共轭复数即可.【题目详解】由已知,,故的虚部为.故选:C.【答案点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
先化简集合A,再求A∪B得解.【题目详解】由题得A={0,1},所以A∪B={-1,0,1}.故答案为{-1,0,1}【答案点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.【答案解析】
由,解得,进而求出,即可得出结果.【题目详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【答案点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.15.【答案解析】
根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【题目详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【答案点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.16.【答案解析】
利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【题目详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【答案点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)填表见解析;有的把握认为,平均车速超过与性别有关(2)详见解析【答案解析】
(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【题目详解】(1)平均车速超过的人数平均车速不超过的人数合计男性驾驶员301040女性驾驶员51520合计352560因为,,所以有的把握认为,平均车速超过与性别有关.(2)服从,即,.所以的分布列如下0123的期望【答案点睛】本小题主要考查列联表独立性检验,考查二项分布分布列和数学期望,属于中档题.18.(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)当时,令,作出的图像,结合图像即可求解;(Ⅱ)结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【题目详解】(Ⅰ)令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为﹣2,因此不等式的解集为.(Ⅱ)..取等号的条件为,即,联立得因此的最小值为.【答案点睛】本题考查绝对值不等式、基本不等式,属于中档题19.(1);(2)证明见解析【答案解析】
(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【题目详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【答案点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.20.(1)l:,C:;(2)【答案解析】
(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;
(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.【题目详解】(1)由题意可得直线:,由,得,即,所以曲线C:.(2)由(1)知,圆,半径.∴圆心到直线的距离为:.∴【答案点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题.21.(1)(2)存在;详见解析【答案解析】
(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入=0由恒成立问题可求得.验证斜率不存在时也适合即得.【题目详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度安徽公司二零二五氨水集中采购合同3篇
- 2024年版公司股东权益保障协议版B版
- 2025年度林地生态环境治理合同范本3篇
- 2024年酒店整体出租协议文本
- 2024年高速铁路隧道工程合同
- 2024年美甲师雇佣协议
- 2024年高级木材门购销协议XXX一
- 2024年饮用水安全知识普及与工程实施二零二四年度合同3篇
- 2024年特许经营合同与劳动合同3篇
- 2024年采购合同产品质量验收及售后服务协议
- ASTM-A269-A269M无缝和焊接奥氏体不锈钢管
- 2024-2030年中国车载动态称重行业投融资规模与发展态势展望研究报告
- 2024年重庆公交车从业资格证考试题库
- 2023年山东省中职普通高校招生(春季高考)统一考试语文试题答案
- 2024年“一岗双责”制度(五篇)
- 美容美发店突发停电应急预案
- 弹性力学材料模型:分层材料的热弹性行为教程
- 2024云南保山电力股份限公司招聘(100人)(高频重点提升专题训练)共500题附带答案详解
- 人教版(2024)七年级上册英语 Unit 1 You and Me 语法知识点复习提纲与学情评估测试卷汇编(含答案)
- 六年级期末家长会课件下载
- DZ∕T 0388-2021 矿区地下水监测规范
评论
0/150
提交评论