




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.0BasicWavefrontAberrationTheoryForOpticalMetrology
ChangchunInstituteofOpticsandFineMechanicsandPhysicsDr.ZhangXuejunThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).OPDTestwavefrontReferencewavefrontRayNotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasured
alongtheray.Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.(+)(-)(+angle)(-angle)Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.XYx=cosy=sin1.2AberrationFreeSystemIftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.FirstmaximumSecondmaximumDiametertothefirstzeroringiscalledthediameterofAiryDisk:workingwavelengthF#:fnumberofthesystemFiniteconjugateNA:numericalApertureNA=nsinuunF#W:WorkingFnumberRuleofthumb:forvisiblelight,0.5m,DAiryF#inmicronsForaberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.rAngularResolution-RayleighCriterion
,isinlp/mmTheCut-Offfrequencyofanopticalsystemis:Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength
ObscuredSystem
UnobscuredSystemFeatures:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly1.3SphericalWavefront,DefocusandLateralShiftAperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:SagequationDefocusOriginalwavefront:Newwavefront:DefocustermIncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:Lateral(Transverse)ShiftInsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:Forthesamereason,ifmovealongYaxis,then:1.4TransverseandLongitudinalAberrationIngeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.WavefrontAberrationExpansionW000W020W040W060W111W131W151W222W242Whatdoaberrationslooklike?W000W020W040W060W111W131W151W222W242W333FieldCurvatureWheredoaberrationscomefrom?DistortionAstigmatismW222ComaW131WarrenSmith,ModernOpticalEngineering,P65SphericalAberrationW=W0404+W=W0404W=W0202W=-1W0202+W0404SphericalAberration+DefocusThrough-focusDiffractionImage(WithSphericalAberration)Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.ImportanttoknowCausticSpecifiesthesizeofaberrationBasicformofaberrationTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.1.6AberrationCoefficientsTheLagrangeInvariantжTheLagrangeInvariantholdsatanyplanebetweenobjectandimage.ж=Atobjectplane:ж=Atimageplane:ж=Forobjectatinfinity:ParaxialRayTracingSnell’sLawL=SeidelCoefficientTableSeidelCoefficientCalculationforaSingleletCalculationbyZemaxCalculationbySeidelCoefficientFormulaTheThinLensFormTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.TheStructureAberrationCoefficientRolandV.ShackTheThinLensBendingItispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.X:MinimumsphericalaberrationIfYisconstant,thenIfobjectatinfinity,Y=1,n=1.5,thenMinimumcomaIfobjectatinfinity,Y=1,n=1.5,thenX=-2X=-1X=+1X=+2Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:ZemaxResultCalculationUsingThinLensFormForobjectatinfinity:ж=Forthinlensisinair,n=1,rearrangethethinlensformula:1.7ZernikePolynomialsOfteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:
canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesn'tchangetheformofthepolynomials:
canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:Where:sinfunctionisusedforn-2m>0
cosfunctionisusedforn-2m0SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:WhereAnmisthecoefficientofZerniketermUnm.4thZernikepolynomialsRe-orderedZernikepolynomials(first36terms)12354678PlotsofZernikepolynomials#1~#89101112131415PlotsofZernikepolynomials#9~#15PlotsofZernikepolynomials#16~#2416171819202122232433PlotsofZernikepolynomials#25~#3625262827293032313534Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.AdvantagesofusingZernikepolynomialsCautionsofusingZernikepolynomialsMidorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfacepronotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.RelationshipBetweenZernikepolynomialsandSeidelAberrationsThefirst9Zernikepolynomialsareexpressedas:ThesameaberrationcanbeexpressedinSeidelform:Usingtheidentity:1.8PeaktoValleyandRMSWavefrontAberrationPeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholeareaoverwhichtheerrorareoccurring.AnopticalsystemhavingalargePVerrormayactuallyperformbetterthanasystemhavingasmallPV.ItismoremeaningfultospecifywavefrontqualityusingtheRMSwavefronterro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 柏拉圃网站策划书
- 教育评价改革路径与实践方案
- 中国汽车工业发展战略思考
- 高标准农田建设项目规划方案
- 丙烯酸酯行业发展趋势与未来市场展望分析
- 电气设备电力系统运行数据挖掘与分析考核试卷
- 北京科技大学天津学院外国语学院招聘考试真题2024
- 技术质量目标与保证措施:全面分析与实施策略
- 成本控制策略解析
- 外贸订单合同范本
- 老姜盘口语言解密高级版全集
- 现代环境生物技术
- 第四章铅酸蓄电池
- GA 1517-2018金银珠宝营业场所安全防范要求
- 保险公司首转对团队的意义方法课件
- TAVI(经皮导管主动脉瓣植入术)术后护理
- 6.3.1 平面向量基本定理 课件(共15张PPT)
- 建筑消防设施巡查记录
- 混凝土护栏检查记录表
- DBJ04∕T 258-2016 建筑地基基础勘察设计规范
- 社会团体民办非清算审计报告模板
评论
0/150
提交评论