版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.0BasicWavefrontAberrationTheoryForOpticalMetrology
ChangchunInstituteofOpticsandFineMechanicsandPhysicsDr.ZhangXuejunThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).OPDTestwavefrontReferencewavefrontRayNotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasured
alongtheray.Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.(+)(-)(+angle)(-angle)Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.XYx=cosy=sin1.2AberrationFreeSystemIftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.FirstmaximumSecondmaximumDiametertothefirstzeroringiscalledthediameterofAiryDisk:workingwavelengthF#:fnumberofthesystemFiniteconjugateNA:numericalApertureNA=nsinuunF#W:WorkingFnumberRuleofthumb:forvisiblelight,0.5m,DAiryF#inmicronsForaberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.rAngularResolution-RayleighCriterion
,isinlp/mmTheCut-Offfrequencyofanopticalsystemis:Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength
ObscuredSystem
UnobscuredSystemFeatures:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly1.3SphericalWavefront,DefocusandLateralShiftAperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:SagequationDefocusOriginalwavefront:Newwavefront:DefocustermIncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:Lateral(Transverse)ShiftInsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:Forthesamereason,ifmovealongYaxis,then:1.4TransverseandLongitudinalAberrationIngeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.WavefrontAberrationExpansionW000W020W040W060W111W131W151W222W242Whatdoaberrationslooklike?W000W020W040W060W111W131W151W222W242W333FieldCurvatureWheredoaberrationscomefrom?DistortionAstigmatismW222ComaW131WarrenSmith,ModernOpticalEngineering,P65SphericalAberrationW=W0404+W=W0404W=W0202W=-1W0202+W0404SphericalAberration+DefocusThrough-focusDiffractionImage(WithSphericalAberration)Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.ImportanttoknowCausticSpecifiesthesizeofaberrationBasicformofaberrationTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.1.6AberrationCoefficientsTheLagrangeInvariantжTheLagrangeInvariantholdsatanyplanebetweenobjectandimage.ж=Atobjectplane:ж=Atimageplane:ж=Forobjectatinfinity:ParaxialRayTracingSnell’sLawL=SeidelCoefficientTableSeidelCoefficientCalculationforaSingleletCalculationbyZemaxCalculationbySeidelCoefficientFormulaTheThinLensFormTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.TheStructureAberrationCoefficientRolandV.ShackTheThinLensBendingItispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.X:MinimumsphericalaberrationIfYisconstant,thenIfobjectatinfinity,Y=1,n=1.5,thenMinimumcomaIfobjectatinfinity,Y=1,n=1.5,thenX=-2X=-1X=+1X=+2Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:ZemaxResultCalculationUsingThinLensFormForobjectatinfinity:ж=Forthinlensisinair,n=1,rearrangethethinlensformula:1.7ZernikePolynomialsOfteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:
canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesn'tchangetheformofthepolynomials:
canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:Where:sinfunctionisusedforn-2m>0
cosfunctionisusedforn-2m0SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:WhereAnmisthecoefficientofZerniketermUnm.4thZernikepolynomialsRe-orderedZernikepolynomials(first36terms)12354678PlotsofZernikepolynomials#1~#89101112131415PlotsofZernikepolynomials#9~#15PlotsofZernikepolynomials#16~#2416171819202122232433PlotsofZernikepolynomials#25~#3625262827293032313534Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.AdvantagesofusingZernikepolynomialsCautionsofusingZernikepolynomialsMidorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfacepronotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.RelationshipBetweenZernikepolynomialsandSeidelAberrationsThefirst9Zernikepolynomialsareexpressedas:ThesameaberrationcanbeexpressedinSeidelform:Usingtheidentity:1.8PeaktoValleyandRMSWavefrontAberrationPeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholeareaoverwhichtheerrorareoccurring.AnopticalsystemhavingalargePVerrormayactuallyperformbetterthanasystemhavingasmallPV.ItismoremeaningfultospecifywavefrontqualityusingtheRMSwavefronterro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衬衫袖扣项目运营指导方案
- 区块链与人工智能融合行业市场调研分析报告
- 宠物用牙刷产品供应链分析
- 喷雾美黑服务行业市场调研分析报告
- 多处理器芯片产业链招商引资的调研报告
- 电耦合器项目营销计划书
- 电子香烟电池充电器市场发展前景分析及供需格局研究预测报告
- 羊毛剪市场发展前景分析及供需格局研究预测报告
- 乳罩产品供应链分析
- 卡纸板产业链招商引资的调研报告
- 解析人体的奥秘智慧树知到答案章节测试2023年浙江中医药大学
- 湘西名人-贺龙综述
- 剑桥国际少儿英语Level 3 1 Family matters 课件(共16张PPT)
- 大学生国家安全教育智慧树知到答案章节测试2023年广西科技大学
- S7200西门子手册资料
- 《2019版预防和治疗压力性损伤快速参考指南》简要分享
- 顶管基坑支护方案
- 【医院】医院各类绩效考核评分表
- GB/T 7597-2007电力用油(变压器油、汽轮机油)取样方法
- GB/T 617-1988化学试剂熔点范围测定通用方法
- 3幼儿园一日活动生活环节的组织策略
评论
0/150
提交评论