版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.0BasicWavefrontAberrationTheoryForOpticalMetrology
ChangchunInstituteofOpticsandFineMechanicsandPhysicsDr.ZhangXuejunThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.Formostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).OPDTestwavefrontReferencewavefrontRayNotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasured
alongtheray.Thedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.(+)(-)(+angle)(-angle)Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.XYx=cosy=sin1.2AberrationFreeSystemIftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.FirstmaximumSecondmaximumDiametertothefirstzeroringiscalledthediameterofAiryDisk:workingwavelengthF#:fnumberofthesystemFiniteconjugateNA:numericalApertureNA=nsinuunF#W:WorkingFnumberRuleofthumb:forvisiblelight,0.5m,DAiryF#inmicronsForaberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.rAngularResolution-RayleighCriterion
,isinlp/mmTheCut-Offfrequencyofanopticalsystemis:Features:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength
ObscuredSystem
UnobscuredSystemFeatures:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly1.3SphericalWavefront,DefocusandLateralShiftAperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:SagequationDefocusOriginalwavefront:Newwavefront:DefocustermIncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamountz(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:Lateral(Transverse)ShiftInsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:Forthesamereason,ifmovealongYaxis,then:1.4TransverseandLongitudinalAberrationIngeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(x,y,z)asafunctionof(x,y).WavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.WavefrontAberrationExpansionW000W020W040W060W111W131W151W222W242Whatdoaberrationslooklike?W000W020W040W060W111W131W151W222W242W333FieldCurvatureWheredoaberrationscomefrom?DistortionAstigmatismW222ComaW131WarrenSmith,ModernOpticalEngineering,P65SphericalAberrationW=W0404+W=W0404W=W0202W=-1W0202+W0404SphericalAberration+DefocusThrough-focusDiffractionImage(WithSphericalAberration)Wavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.ImportanttoknowCausticSpecifiesthesizeofaberrationBasicformofaberrationTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.1.6AberrationCoefficientsTheLagrangeInvariantжTheLagrangeInvariantholdsatanyplanebetweenobjectandimage.ж=Atobjectplane:ж=Atimageplane:ж=Forobjectatinfinity:ParaxialRayTracingSnell’sLawL=SeidelCoefficientTableSeidelCoefficientCalculationforaSingleletCalculationbyZemaxCalculationbySeidelCoefficientFormulaTheThinLensFormTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.TheStructureAberrationCoefficientRolandV.ShackTheThinLensBendingItispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.X:MinimumsphericalaberrationIfYisconstant,thenIfobjectatinfinity,Y=1,n=1.5,thenMinimumcomaIfobjectatinfinity,Y=1,n=1.5,thenX=-2X=-1X=+1X=+2Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:ZemaxResultCalculationUsingThinLensFormForobjectatinfinity:ж=Forthinlensisinair,n=1,rearrangethethinlensformula:1.7ZernikePolynomialsOfteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.Zernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:
canbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinateandtheotherdependsonlyontheangularcoordinate.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesn'tchangetheformofthepolynomials:
canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:Where:sinfunctionisusedforn-2m>0
cosfunctionisusedforn-2m0SothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:WhereAnmisthecoefficientofZerniketermUnm.4thZernikepolynomialsRe-orderedZernikepolynomials(first36terms)12354678PlotsofZernikepolynomials#1~#89101112131415PlotsofZernikepolynomials#9~#15PlotsofZernikepolynomials#16~#2416171819202122232433PlotsofZernikepolynomials#25~#3625262827293032313534Zernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.AdvantagesofusingZernikepolynomialsCautionsofusingZernikepolynomialsMidorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfacepronotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.RelationshipBetweenZernikepolynomialsandSeidelAberrationsThefirst9Zernikepolynomialsareexpressedas:ThesameaberrationcanbeexpressedinSeidelform:Usingtheidentity:1.8PeaktoValleyandRMSWavefrontAberrationPeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythewavefronterrorisconvenientandsimple,butitcanbemisleading.Ittellsnothingaboutthewholeareaoverwhichtheerrorareoccurring.AnopticalsystemhavingalargePVerrormayactuallyperformbetterthanasystemhavingasmallPV.ItismoremeaningfultospecifywavefrontqualityusingtheRMSwavefronterro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境暴露生物标志物与伴随健康监测
- 产品设计经理面试题目与解答指南
- 特殊职业人群糖尿病口腔健康风险分析
- 特殊群体(残障)患者的知情同意替代方案与隐私
- 中国平安保险产品经理面试题及答案
- 花洒、淋浴头项目可行性研究报告(总投资10000万元)(49亩)
- 特殊人群健康促进资源共享策略
- 深度解析(2026)GBT 18491.5-2010信息技术 软件测量 功能规模测量 第5部分:功能规模测量的功能域确定
- 乡镇助理医师课件
- 物流管理岗仓储与配送面试问题解析
- 2022室外排水设施设计与施工-钢筋混凝土化粪池22S702
- 工程维保及售后服务方案
- GB/Z 43482-2023液压传动软管和软管总成收集流体样本分析清洁度的方法
- 急性中毒的处理与抢救
- 淤泥消纳施工方案
- 附表:医疗美容主诊医师申请表
- 跌落式熔断器熔丝故障原因分析
- 2023年全市中职学校学生职业技能大赛
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 仓库安全管理检查表
- 岭南版美术科五年级上册期末素质检测试题附答案
评论
0/150
提交评论