版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<02.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中成立的是()A. B. C. D.4.下列光线所形成的投影不是中心投影的是()A.太阳光线 B.台灯的光线 C.手电筒的光线 D.路灯的光线5.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.106.如图,在中,,过重心作、的垂线,垂足分别为、,则四边形的面积与的面积之比为()A. B. C. D.7.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是()A. B. C. D.8.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)9.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC10.已知反比例函数,下列结论;①图象必经过点;②图象分布在第二,四象限;③在每一个象限内,y随x的增大而增大.其中正确的结论有()个.A.3 B.2 C.1 D.011.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+212.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解二、填空题(每题4分,共24分)13.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.14.如果点把线段分割成和两段(),其中是与的比例中项,那么的值为________.15.若,则化简得_______.16.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.17.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.18.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.三、解答题(共78分)19.(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.20.(8分)如图1,在中,,,,点是边上一个动点(不与、重合),点为射线上一点,且,以点为圆心,为半径作,设.(1)如图2,当点与点重合时,求的值;(2)当点在线段上,如果与的另一个交点在线段上时,设,试求与之间的函数解析式,并写出的取值范围;(3)在点的运动过程中,如果与线段只有一个公共点,请直接写出的取值范围.21.(8分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。(1)求李老师第一次摸出的乒乓球代表男生的概率;(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.22.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点M是AB边的中点.(1)如图1,若CM=,求△ACB的周长;(2)如图2,若N为AC的中点,将线段CN以C为旋转中心顺时针旋转60°,使点N至点D处,连接BD交CM于点F,连接MD,取MD的中点E,连接EF.求证:3EF=2MF.23.(10分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.24.(10分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1(1)线段A1B1的长是∠AOA1的度数是(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.25.(12分)如图,已知、两点的坐标分别为,,直线与反比例函数的图象相交于点和点.(1)求直线与反比例函数的解析式;(2)求的度数;(3)将绕点顺时针方向旋转角(为锐角),得到,当为多少度时,并求此时线段的长度.26.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系2、B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.3、B【分析】由题意根据三角函数的定义进行判断,从而判断选项解决问题.【详解】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴,故A选项不成立;,故B选项成立;,故C选项不成立;,故D选项不成立;故选B.【点睛】本题主要考查锐角三角函数的定义,我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.4、A【分析】利用中心投影(光由一点向外散射形成的投影叫做中心投影)和平行投影(由平行光线形成的投影是平行投影)的定义即可判断出.【详解】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.
B.台灯的光线是由台灯光源发出的光线,是中心投影;
C.手电筒的光线是由手电筒光源发出的光线,是中心投影;
D.路灯的光线是由路灯光源发出的光线,是中心投影.
所以,只有A不是中心投影.
故选:A.【点睛】本题考查了中心投影和平行投影的定义.熟记定义,并理解一般情况下,太阳光线可以近似的看成平行光线是解决此题的关键.5、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.6、C【分析】连接AG并延长交BC于点F,根据G为重心可知,AG=2FG,CF=BF,再证明△ADG∽△GEF,得出,设矩形CDGE中,DG=a,EG=b,用含a,b的式子将AC,BC的长表示出来,再列式化简即可求出结果.【详解】解:连接AG并延长交BC于点F,根据G为重心可知,AG=2FG,CF=BF,易得四边形GDCE为矩形,∴DG∥BC,DG=CD=EG=CE,∠CDG=∠CEG=90°,∴∠AGD=∠AFC,∠ADG=∠GEF=90°,∴△ADG∽△GEF,∴.设矩形CDGE中,DG=a,EG=b,∴AC=AD+CD=2EG+EG=3b,BC=2CF=2(CE+EF)=2(DG+)=3a,∴.故选:C.【点睛】本题主要考查重心的概念及相似的判定与性质以及矩形的性质,正确作出辅助线构造相似三角形是解题的突破口,掌握基本概念和性质是解题的关键.7、D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程.【详解】解:设每轮传染中平均一个人传染了x个人,
则第一轮传染后患流感的人数是:1+x,
第二轮传染后患流感的人数是:1+x+x(1+x),
因此可列方程,1+x+x(1+x)=1.
故选:D.【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键.8、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案.【详解】解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数.9、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.10、A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y随x的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.11、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.12、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.二、填空题(每题4分,共24分)13、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.14、【分析】根据黄金分割的概念和黄金比是解答即可.【详解】∵点把线段分割成和两段(),其中是与的比例中项,∴点P是线段AB的黄金分割点,∴=,故填.【点睛】此题考察黄金分割,是与的比例中项即点P是线段AB的黄金分割点,即可得到=.15、【分析】根据二次根式的性质得出,再运用绝对值的意义去掉绝对值号,化简后即可得出答案.【详解】解:∵,∴.∴.故答案为:1.【点睛】此题主要考查二次根式的性质,解题的关键是掌握性质并能根据字母的取值范围确定正负,准确去掉绝对值号.16、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.17、8【解析】在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.18、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度.三、解答题(共78分)19、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:,∴,即,∴△≌△,∴AC′=BD′,,设BD′与OA相交于点N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.20、(1);(2);(3)当或或时,与线段只有一个公共点.【分析】(1)在Rt△BOC中,利用勾股定理即可解决问题.
(2)如图2中,作OH⊥AB于H,CG⊥AB于G,连接CE.证明,利用相似三角形的性质构建关系式即可解决问题.
(3)分三种情形分别求解即可解决问题.【详解】解:(1)如图1中,图1在中,,,,,设,,在中,,,(2)过点,分别作,,垂足为点,;;又在中;在中;∵∠AGC=∠ACB=90°,∠A=∠A,∴又,又即化简得(3)①如图1中,当经过点时,易知:观察图象可知:当时,与线段只有一个公共点.②如图2中,当与相切时,,易知,此时③如图3中,当时,与线段只有一个公共点.综上所述,当或或时,与线段只有一个公共点.【点睛】本题属于圆综合题,考查了直线与圆的位置关系,勾股定理,解直角三角形以及相似三角形的判定与性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,21、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.【分析】(1)共3个球,第一次摸出的乒乓球代表男生的有1种,即可利用概率公式求得结果;(2)列树状图即可解答.【详解】(1)共有3个球,第一次摸出的乒乓球代表男生的有1种情况,∴第一次摸出的乒乓球代表男生的概率为;(2)树状图如下:共有6种等可能的情况,其中恰好选定一名男生和一名女生参赛的有4种,∴P(恰好选定一名男生和一名女生参赛)=.【点睛】此题考查事件概率的求法,简单事件的概率可直接利用公式计算,复杂事件的概率可利用列树状图解答,解题中注意事件是属于“放回”或是“不放回”事件.22、(1);(2)证明见解析.【分析】(1)根据直角三角形中,斜边上的中线等于斜边的一半可得AB的长度,根据30°所对的直角边等于斜边的一半可得BC的长度,最后根据勾股定理可得AC的长度,计算出周长即可;(2)如图所示添加辅助线,由(1)可得ΔBCM是等边三角形,可证ΔBCP≌ΔCMN,进而证明ΔBPF≌ΔDCF,根据E是MD中点,得出,根据BPMC,得出,进而得出3EF=2MF即可.【详解】解:(1)在Rt△ABC中,∠ACB=90°,点M是AB边的中点,∴∴AB=2MC=,又∵∠A=30°,∴由勾股定理可得,∴△ABC的周长为++6=(2)过点B作BPMC于P∵∠ACB=90°,∠A=30°,∴∵M为AB的中点,∴∴∵∠ABC=60°∴ΔBCM是等边三角形∴∠CBP=∠MCN=30°,BC=CM∴在ΔBCP与ΔCMN中∴ΔBCP≌ΔCMN(AAS)∴BP=CN∵CN=CD∴BP=CD∵∠BPF=∠DCF=90°∠BFP=∠DFC∴ΔBPF≌ΔDCF∴PF=FCBF=DF∵E是MD中点,∴∵BPMC,∴∴,∴∴【点睛】本题考查含30°直角三角形的性质、全等三角形的性质与判定、旋转的性质,解题的关键是能够综合运用上述几何知识进行推理论证.23、(1)60;(2)12,图见解析;(3)450【分析】(1)用滑冰的人数除以滑冰的比例,即可解得本次调查共抽取的学生人数.(2)用总人数减去其他各项的人数,即可得到最喜欢冰球项目的人数,补全条形统计图.(3)用总人数乘以最喜欢雪地足球的学生的比例,即可进行估算.【详解】解:(1)(人)∴本次抽样调查共抽取了60名学生(2)(人)∴本次调查中,最喜欢冰球项目的学生人数为12人.补全条形统计图(3)(人)∴由样本估计总体得该中学最喜欢雪地足球的学生约有450人.【点睛】本题考查了概率统计的问题,掌握条形图的性质、饼状图的性质是解题的关键.24、(1)6,90;(2)见解析;(3)1【分析】(1)根据旋转的性质即可直接求解;
(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;
(3)利用平行四边形的面积公式求解.【详解】解:(1)由旋转的性质可知:A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
(2)∵A1B1=AB=6,OA1=OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,
∴∠OA1B1=∠AOA1,A1B1=OA,
∴B1A1∥OA,
∴四边形OAA1B1是平行四边形;
(3)S=OA•A1O=6×6=1.
即四边形OAA1B1的面积是1.故答案为(1)6,90;(2)见解析;(3)1.【点睛】本题考查旋转的性质以及平行四边形的判定和面积公式,证明B1A1∥OA是关键.25、(1)直线AB的解析式为,反比例函数的解析式为;(2)∠ACO=30°;(3)当为60°时,OC'⊥AB,AB'=1.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出n的值,确定出D的坐标,将D坐标代入反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 今典玉派家具导购培训-1-22摘要
- 小学六年级科学课件教科版第3课 电和磁
- 《宫颈电圈环切术》课件
- 《基础与地下室》课件
- ABB工业机器人应用技术 故障诊断与维护 课件任务4-6 关节型工业机器人IRB460本体维护
- 图文民主决策:做出最佳选择(课件)
- 培训机构退费协议书(2篇)
- 2021年内蒙古自治区阿拉善盟公开招聘警务辅助人员(辅警)笔试摸底备战测试(2)卷含答案
- 2024年甘肃省天水市公开招聘警务辅助人员(辅警)笔试冲刺自测题一卷含答案
- 2023年四川省自贡市公开招聘警务辅助人员(辅警)笔试经典练习卷(A)含答案
- 司法鉴定规范化与新司法鉴定程序通则课件
- 自然资源保护法课件
- 中药涂药技术在输液性静脉炎中的应用小讲课护理课件
- 《小小主持人》课件
- 专业设置可行性报告
- 幼儿小号表演课件
- 商住综合体物业管理投标方案技术标
- 《系统解剖学》课程考试复习题库大全-4感受器部分
- 福建省宁德市普通高中2023-2024学年高三上数学期末联考试题含解析
- 律师为什么替“坏人”辩护
- 7-中文标点输入妙公开课
评论
0/150
提交评论