下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,关于抛物线,下列说法错误的是()A.顶点坐标为(1,)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小3.如图,在中,点分别在边上,且,则下列结论不一定成立的是()A. B. C. D.4.已知Rt△ABC,∠ACB=90º,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为()A. B. C. D.5.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.46.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇7.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是()A. B.C. D.8.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为()A. B.C. D.9.若点在反比例函数上,则的值是()A. B. C. D.10.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是___________.12.如图,的顶点和分别在轴、轴的正半轴上,且轴,点,将以点为旋转中心顺时针方向旋转得到,恰好有一反比例函数图象恰好过点,则的值为___________.13.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.14.一元二次方程x2=3x的解是:________.15.一元二次方程x2=x的解为.16.120°的圆心角对的弧长是6π,则此弧所在圆的半径是_____.17.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.18.圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度.三、解答题(共66分)19.(10分)如图,内接于,直径交于点,延长至点,使,且,连接并延长交过点的切线于点,且满足,连接.(1)求证:;(2)求证:是的切线.20.(6分)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?21.(6分)已知二次函数的图象经过点.(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;(2)已知点,在该二次函数的图象上,求的取值范围;(3)当时,若该二次函数的图象与直线交于点,,且,求的值.22.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2),B(-4,-1),C(-4,-4).(1)画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2)将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.23.(8分)作出函数y=2x2的图象,并根据图象回答下列问题:(1)列表:x……y……(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是(直接写出结论).24.(8分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?25.(10分)综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.26.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.3、B【分析】根据相似三角形平行线分线段成比例的性质,分别判定即可.【详解】∵∴∠A=∠CEF,∠ADE=∠ABC,∠CFE=∠ABC,,∴∠ADE=∠CFE,,C选项正确;∴△ADE∽△EFC∴,A选项正确;又∵∴,D选项正确;∵∴不成立故答案为B.【点睛】此题主要考查相似三角形平行线分线段成比例的运用,熟练掌握,即可解题.4、A【分析】如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,由勾股定理可求AB的长,由锐角三角函数可求BH,CH,DH的长,由折叠的性质可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用锐角三角函数可求EF=,由面积关系可求解.【详解】解:如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵点D为斜边中点,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵将△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴设DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故选:A.【点睛】本题考查了翻折变换,直角三角形的性质,锐角三角函数的性质,勾股定理等知识,添加恰当辅助线是本题的关键.5、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,3,x,1,1,2.已知这组数据的平均数是3,
∴x=3×2-4-4-3-1-1-2=3,
∴这一组数从小到大排列为:3,4,4,3,1,1,2,
∴这组数据的中位数是:3.
故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.6、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=-x1的顶点坐标为(0,0),
先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),
所以,平移后的抛物线的解析式为y=-(x+1)1-1.
故选:B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.8、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:∵矩形ABCD的面积为1,∴,∵B、D为线段EF的三等分点,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四边形ABCD是矩形,∴,∵,,∴,,又∵,∴四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,∴,∴又∵,即,∴,∴直线EF的解析式为,令,得,令,即,解得,∴,,∵F点在轴的上方,∴,∴,,∵,即,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.9、C【分析】将点(-2,-6)代入,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.10、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图二、填空题(每小题3分,共24分)11、【分析】由1占圆,2与3占,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【详解】解:占圆,2与3占,把数字为1的扇形可以平分成2部分,转动转盘一次共有4种等可能的结果,分别是1,1,2,3;当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.12、-24【分析】先根据图形旋转的性质得BD=BA,∠DBA=90°,再得出轴,然后求得点D的坐标,最后利用待定系数法求解反比例函数的解析式即可.【详解】设DB与轴的交点为F,如图所示:∵以点为旋转中心顺时针方向旋转得到,点,轴∴BD=BA=6,∠DBA=90°∴轴∴DF=6-2=4∴点D的坐标为(-4,6)∵反比例函数图象恰好过点∴,解得:故填:【点睛】本题主要考查坐标与图形变化-旋转、待定系数法求反比例函数解析式,根据图形旋转的性质得出点D的坐标是关键.13、【分析】根据等量关系“大圆的面积=2×小圆的面积”可以列出方程.【详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:π(x+5)2=2πx2,解得,x=5+5或x=5-5(不合题意,舍去).故答案为5+5.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.14、x1=0,x2=1【分析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解15、x1=0,x2=1.【解析】试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.考点:解一元二次方程-因式分解法.16、1【分析】根据弧长的计算公式l=,将n及l的值代入即可得出半径r的值【详解】解:根据弧长的公式l=,得到:6π=,解得r=1.故答案:1.【点睛】此题考查弧长的计算,掌握计算公式是解题关键17、1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.18、1【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,,解得n=1.故答案为1.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.三、解答题(共66分)19、(1)详见解析;(2)详见解析.【分析】(1)根据切线的性质得到∠GAF=90°,根据平行线的性质得到AE⊥BC,根据圆周角定理即可得到结论;
(2)由DF=2OD,得到OF=3OD=3OC,由得到OC=OD=3OE,推出△COE∽△FOC,根据相似三角形的性质得到∠OCF=∠OEC=90°,于是得到CF是⊙O的切线.【详解】解:(1)是的切线,是的直径,,,,,,,;(2),,,,,,是的切线.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,根据切线的判定和性质去分析所缺条件是解题的关键.20、(1)S=﹣x1+13x,10<x≤11;(1)菜园的长为10m;(3)该菜园的长为13m时,菜园的面积最大,最大面积是111.3m1.【分析】(1)根据矩形的面积公式即可得结论;(1)根据题意列一元二次方程即可求解;(3)根据二次函数的顶点式即可求解.【详解】解:(1)由题意可知:AD=(30﹣x)∴S=AB•AD=x×(30﹣x)=﹣x1+13x自变量x的取值范围是10<x≤11.(1)当S=100时,﹣x1+13x=100解得x1=10,x1=10,又10<x≤11.∴x=10,答:该菜园的长为10m.(3)∵S=﹣x1+13x=﹣(x﹣13)1+又10<x≤11.∴当x=13时,S取得最大值,最大值为111.3.答:该菜园的长为13m时,菜园的面积最大,最大面积是111.3m1.【点睛】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是理解题意列出二次函数解析式和方程.21、(1);(2);(3)或2.【分析】(1)将和点,代入解析式中,即可求出该二次函数的表达式;(2)根据点M和点N的坐标即可求出该抛物线的对称轴,再根据二次函数的开口方向和二次函数的增加性,即可列出关于t的不等式,从而求出的取值范围;(3)将和点代入解析式中,可得,然后将二次函数的解析式和一次函数的解析式联立,即可求出点P、Q的坐标,最后利用平面直角坐标系中任意两点之间的距离公式即可求出的值.【详解】解:(1)∵,∴二次函数的表达式为.∵点,在二次函数的图象上,∴.解得.∴该抛物线的函数表达式为.(2)∵点,在该二次函数的图象上,∴该二次函数的对称轴是直线.∵抛物线开口向上,,,在该二次函数图象上,且,∴点,分别落在点的左侧和右侧,∴.解得的取值范围是.(3)当时,的图象经过点,∴,即.∴二次函数表达式为.根据二次函数的图象与直线交于点,由,解得,.∴点的横坐标分别是1,.不妨设点的横坐标是1,则点与点重合,即的坐标是,如下图所示∴点的坐标是,即的坐标是.∵,∴根据平面直角坐标系中任意两点之间的距离公式,可得.解得或2.【点睛】此题考查的是二次函数与一次函数的综合大题,掌握用待定系数法求二次函数的解析式、二次函数的增减性、求二次函数与一次函数的交点坐标和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.22、(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.23、(1)见解析;(2)见解析;(3)【分析】(1)根据函数的解析式,取x,y的值,即可.(2)描点、连线,画出的函数图象即可;(3)结合函数图象即可求解.【详解】(1)列表:x…﹣2﹣1012…y…82028…(2)画出函数y=2x2的图象如图:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是,故答案为:.24、每辆车需降价2万元【分析】设每辆车需降价万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价万元,则日销售量为辆,依题意,得:,解得:,,∵要尽快减少库存,∴.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.25、(1)点A的坐标为(-2,0),点B的坐标为(1,0),顶点坐标为(1,).(2)PQ的最大值=,此时,点P的坐标为(1,3)【分析】(1)令y=0可求得x的值,可知点A、点B的坐标,运用配方法可求抛物线的顶点坐标;(2)先求出直线BC的表达式,再设点Q的坐标为(m,)则点E的坐标为(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解决问题.【详解】(1)把y=0代入中得:解得:x1=-2,x2=1∴点A的坐标为(-2,0),点B的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届山西省孝义中学生物高三第一学期期末检测模拟试题含解析
- 2025届海南省华中师大琼中附中、屯昌中学数学高一上期末学业水平测试模拟试题含解析
- 桂林中学2025届生物高二上期末质量跟踪监视模拟试题含解析
- 2025届江苏省扬大附中东部分校生物高三上期末学业质量监测模拟试题含解析
- 2025届四川省广元天立国际学校高三语文第一学期期末复习检测模拟试题含解析
- 2025届河北省廊坊市省级示范高中联合体英语高三第一学期期末调研试题含解析
- 2025届山西省忻州市第一中学英语高三上期末教学质量检测模拟试题含解析
- 2025届陕西省汉中市西乡二中生物高一上期末预测试题含解析
- 2025届河北省沧州市六校联盟高二上生物期末达标检测模拟试题含解析
- 陕西省铜川市2025届高一数学第一学期期末调研试题含解析
- 快速康复外科在泌尿外科患者围手术期护理中的应用进展
- 妇科护理宫颈炎盆腔炎的护理
- 第6课《求助电话》课件
- 防火封堵报价范本
- 口腔新技术护理课件
- 奇正藏药行业分析
- 农牧项目计划书
- 《设计管理体系》课件
- 奥迪售后管理制度
- 区域发展的自然环境基础(教学课件含视频) -高中地理人教版2019选择性必修二
- 舆情处置培训课件
评论
0/150
提交评论