河南省宝丰县2022年数学九上期末监测模拟试题含解析_第1页
河南省宝丰县2022年数学九上期末监测模拟试题含解析_第2页
河南省宝丰县2022年数学九上期末监测模拟试题含解析_第3页
河南省宝丰县2022年数学九上期末监测模拟试题含解析_第4页
河南省宝丰县2022年数学九上期末监测模拟试题含解析_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果点在双曲线上,那么m的值是()A. B. C. D.2.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.3.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2) B.(4,3) C.(6,2) D.(6,3)4.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同5.如图,在中,,,,则的面积是()A. B. C. D.6.正三角形外接圆面积是,其内切圆面积是()A. B. C. D.7.如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若,则下列结论中一定正确的是()A.①和②相似 B.①和③相似 C.①和④相似 D.③和④相似8.二次函数y=x2-2x+4A.y=(x-1)2C.y=(x-2)29.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A. B. C. D.10.一个凸多边形共有20条对角线,它是()边形A.6 B.7 C.8 D.911.下列方程没有实数根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=012.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB二、填空题(每题4分,共24分)13.已知函数是反比例函数,则的值为__________.14.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).15.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有个.16.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.17.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________18.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=_____三、解答题(共78分)19.(8分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:菱形,使菱形的顶点落在边上.20.(8分)解方程(2x+1)2=3(2x+1)21.(8分)解方程:3x(1x+1)=4x+1.22.(10分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.23.(10分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationallmportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.24.(10分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.25.(12分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求该抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q的坐标.26.计算:(1);(2)解方程:.

参考答案一、选择题(每题4分,共48分)1、A【分析】将点代入解析式中,即可求出m的值.【详解】将点代入中,得:故选A.【点睛】此题考查的是根据点所在的图象求点的纵坐标,解决此题的关键是将点的坐标代入解析式即可.2、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.3、B【分析】根据点A的坐标变化可以得出线段AB是向右平移一个单位长度,向上平移一个单位长度,然后即可得出点B'坐标.【详解】∵点A(1,0)平移后得到点A'(2,1),∴向右平移了一个单位长度,向上平移了一个单位长度,∴点B(3,2)平移后的对应点B'坐标为(4,3).故选:B.【点睛】本题主要考查了直角坐标系中线段的平移,熟练掌握相关方法是解题关键.4、D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A.打开电视,它正在播广告是随机事件;B.抛掷一枚硬币,正面朝上是随机事件;C.打雷后下雨是随机事件;D.∵一年有365天,∴367人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【分析】在Rt△ABC中,求出BC,AC即可解决问题.【详解】解:在Rt△ACB中,∵∠C=90°,AB=8cm,

∴sinA==,

∴BC=6(cm),

∴AC=(cm),

∴S△ABC=•BC•AC=×6×2=6(cm2).

故选:C.【点睛】本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】△ABC为等边三角形,利用外接圆和内切圆的性质得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三边的关系得到OD=OB,然后根据圆的面积公式得到△ABC的外接圆的面积与其内切圆的面积之比,即可得解.【详解】△ABC为等边三角形,AD为角平分线,⊙O为△ABC的内切圆,连OB,如图所示:∵△ABC为等边三角形,⊙O为△ABC的内切圆,∴点O为△ABC的外心,AD⊥BC,∴∠OBC=30°,在Rt△OBD中,OD=OB,∴△ABC的外接圆的面积与其内切圆的面积之比=OB2:OD2=4:1.∵正三角形外接圆面积是,∴其内切圆面积是故选:D.【点睛】本题考查了正多边形与圆:正多边有内切圆和外接圆,并且它们是同心圆.也考查了等边三角形的性质.7、B【解析】由题图可知,,由,可得即可得出【详解】由题图可知,,结合,可得.故选B.【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS").8、B【解析】试题分析:设原正方形的边长为xm,依题意有:(x﹣1)(x﹣2)=18,故选C.考点:由实际问题抽象出一元二次方程.9、A【分析】根据勾股定理逆定理推出∠C=90°,再根据进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.10、C【分析】根据多边形的对角线的条数公式列式进行计算即可求解.【详解】解:设该多边形的边数为n,由题意得:,解得:(舍去)故选:C.【点睛】本题主要考查了多边形的对角线公式,熟记公式是解题的关键.11、D【解析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△=-4ac的值的符号即可.【详解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根,故本选项错误;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有两个不相等的实数根,故本选项错误;C、∵△=b2﹣4ac=12﹣12=0,∴方程有两个相等的实数根,故本选项错误;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,故本选项正确.故选:D.【点睛】本题考查根的判别式.一元二次方程的根与△=-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、C【解析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选C.【点睛】本题考查了平行线的判定,三角形外角的性质,比较简单.二、填空题(每题4分,共24分)13、1【分析】根据反比例函数的定义列出方程,然后解一元二次方程即可.【详解】解:根据题意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案为:1.【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题.【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:.【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.15、1【分析】根据摸到白球的概率公式x10=40%【详解】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)=x10=10%解得:x=1.故答案为1.考点:已知概率求数量.16、【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.18、58°【解析】根据圆周角定理得到∠BAD=∠BCD=32°,∠ADB=90°,根据互余的概念计算即可.【详解】由圆周角定理得,∠BAD=∠BCD=32°,∵AB为⊙O的直径,∴∴故答案为【点睛】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等.三、解答题(共78分)19、作图见解析.【分析】由在上,结合菱形的性质,可得在的垂直平分线上,利用菱形的四条边相等确定的位置即可得到答案.【详解】解:作的垂直平分线交于,以为圆心,为半径作弧,交垂直平分线于,连接,则四边形即为所求.【点睛】本题考查的是菱形的判定与性质,同时考查了设计与作图,掌握以上知识是解题的关键.20、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.21、=,=−.【分析】方程整理后,利用因式分解法即可得出结果.【详解】方程整理得:3x(1x+1)−1(1x+1)=0,分解因式得:(3x−1)(1x+1)=0,可得3x−1=0或1x+1=0,解得:=,=−.22、(1)作图见解析;(2)关于x轴对称.【分析】(1)依据中心对称的性质,即可得到关于原点的中心对称图形△;(2)依据轴对称的性质,即可得到△,进而根据图形位置得出△与△的位置关系.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,△A2B2C2与△A1B1C1的位置关系是关于x轴对称.故答案为:关于x轴对称.【点睛】本题主要考查了利用旋转变换以及轴对称变换作图,掌握轴对称性的性质以及中心对称的性质是解决问题的关键.23、(1);(2).【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;(2)画树状图列出所有可能性,即可求出概率.【详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同∴在这四个国家馆中小滕选择.中国馆的概率是;(2)画树状图分析如下:共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种∴小滕和小刘恰好选择同一国家馆参观的概率.【点睛】本题考查了树状图求概率,属于常考题型.24、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.试题解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为1.考点:全等三角形的判定与性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论