2022-2023学年江苏省连云港市灌南县九年级数学第一学期期末达标检测模拟试题含解析_第1页
2022-2023学年江苏省连云港市灌南县九年级数学第一学期期末达标检测模拟试题含解析_第2页
2022-2023学年江苏省连云港市灌南县九年级数学第一学期期末达标检测模拟试题含解析_第3页
2022-2023学年江苏省连云港市灌南县九年级数学第一学期期末达标检测模拟试题含解析_第4页
2022-2023学年江苏省连云港市灌南县九年级数学第一学期期末达标检测模拟试题含解析_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°2.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是()A.abc>0 B.2a﹣b<0 C.b2﹣4ac<0 D.a﹣b+c>﹣13.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个4.如图,两条直线被三条平行线所截,若,则()A. B. C. D.5.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<116.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个7.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=8.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.9.一元二次方程有一根为零,则的值为()A. B. C.或 D.或10.把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,211.在中,,,则的值为()A. B. C. D.12.已知平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是__________.

14.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.15.如图,在中,点是边的中点,⊙经过、、三点,交于点,是⊙的直径,是上的一个点,且,则___________.16.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{1,﹣3}=1,则max{x2+2x+3,﹣2x+8}的最小值是_____.17.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.18.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.三、解答题(共78分)19.(8分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.20.(8分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.21.(8分)按要求解答下列各小题.(1)解方程:;(2)计算:.22.(10分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.23.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.24.(10分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.25.(12分)如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)当DF•DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.26.如图,在中,,以为直径作交于于于.求证:是中点;求证:是的切线

参考答案一、选择题(每题4分,共48分)1、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.2、B【分析】根据二次函数的图象及性质与各项系数的关系即可判断A;根据抛物线的对称轴即可判断B;根据抛物线与x轴的交点个数即可判断C;根据当x=﹣1时y<0,即可判断D.【详解】A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意;B、如图所示,对称轴在直线x=﹣1的左边,则﹣<﹣1,又a>0,所以2a﹣b<0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意;D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故不符合题意.故选:B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.3、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,则,

∴,

∵,

∴,

∴,

∴;

所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,

∴,

∴CF∥DE,

∵,

∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.4、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,,即,解得,,,故选:.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.5、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.6、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【点睛】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.7、D【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正确;cosD=,故D错误,故选:D.【点睛】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.8、B【分析】根据概率公式即可得出答案.【详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【点睛】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.10、A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式.11、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.12、C【解析】∵在平面直角坐标系中,关于原点对称的两个点的横坐标与横坐标、纵坐标与纵坐标都互为相反数,∴点P(1,-2)关于原点的对称点坐标为(-1,2),故选C.二、填空题(每题4分,共24分)13、【分析】利用垂径定理构建直角三角形,然后利用勾股定理即可得解.【详解】设排水管最低点为C,连接OC交AB于D,连接OB,如图所示:

∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案为:.【点睛】此题主要考查垂径定理的实际应用,熟练掌握,即可解题.14、【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:

由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,

∴P(美丽).故答案为:.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15、1【分析】根据题意得到△BDC是等腰三角形,外角和定理可得∠ADC也就是要求的∠AFC.【详解】连接DE,∵CD是⊙的直径,∴∠DEC=90°,DE⊥BC,∵E是BC的中点,∴DE是BC的垂直平分线,则BD=CD,∴∠DCE=∠B=24°,∴∠ADC=∠DCE+∠B=1°,∴∠AFC=∠ADC=1°,故填:1.【点睛】本题考查了线段垂直平分线的性质、外角和定理、同弧所对的圆周角相等,综合性较强,是中考填空题、选择题的常见题型.16、1【分析】根据题意,利用分类讨论的方法、二次函数的性质和一次函数的性质可以求得各段对应的最小值,从而可以解答本题.【详解】∵(x2+2x+3)﹣(﹣2x+8)=x2+4x﹣5=(x+5)(x﹣1),∴当x=﹣5或x=1时,(x2+2x+3)﹣(﹣2x+8)=0,∴当x≥1时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥1,当x≤﹣5时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥18,当﹣5<x<1时,max{x2+2x+3,﹣2x+8}=﹣2x+8>1,由上可得:max{x2+2x+3,﹣2x+8}的最小值是1.故答案为:1.【点睛】本题考查了二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.17、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,

∴-2+4=-m,-2×4=n,

解得:m=-2,n=-8,

∴m+n=-1,

故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.18、【详解】∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.三、解答题(共78分)19、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在A手中的情况,再利用概率公式即可求得答案【详解】解:列树状图一共有4种结果,两次传球后,球在A手中的有2种情况,∴P(两次传球后,球在A手中的).【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.21、(1);;(2).【分析】(1)去括号整理后利用因式分解法解方程即可;

(2)直接利用特殊角的三角函数值代入求出答案.【详解】(1)去括号得:移项合并得:因式分解得:即:或∴;(2).【点睛】本题考查了解一元二次方程-因式分解法,特殊角的三角函数值,正确分解因式、熟记特殊角的三角函数值是解题关键.22、(1)原方程无实数根.(2)x1=1,x2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b2-4ac的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【详解】解:(1)∵当m=3时,△=b2﹣4ac=22﹣4×3=﹣8<1,∴原方程无实数根.(2)当m=﹣3时,原方程变为x2+2x﹣3=1,∵(x﹣1)(x+3)=1,∴x﹣1=1,x+3=1.∴x1=1,x2=﹣3.23、(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、、或.【解析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标.【详解】解:将、代入中,得:,解得:,抛物线的解析式为.连接BC交抛物线对称轴于点P,此时取最小值,如图1所示.当时,有,解得:,,点B的坐标为.抛物线的解析式为,抛物线的对称轴为直线.设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为.当时,,当的值最小时,点P的坐标为.设点M的坐标为,则,,.分三种情况考虑:当时,有,即,解得:,,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、、或【点睛】本题考查待定系数法求二次一次函数解析式、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程.24、(1),(2);(3)(人)【解析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级名学生中成绩为优秀的学生人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论