版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×2.如图,在中,,,则的值是()A. B.1 C. D.3.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是()A. B. C. D.4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差 B.众数 C.平均数 D.中位数5.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则下列各点中在⊙A外的是()A.点A B.点B C.点C D.点D6.已知2x=5y(y≠0),则下列比例式成立的是()A. B. C. D.7.如图,在Rt△ABC中,∠C=Rt∠,则cosA可表示为(
)A. B. C. D.8.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.9.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则EC:AE的值为()A. B. C. D.10.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图是一个圆锥的展开图,如果扇形的圆心角等于90°,扇形的半径为6cm,则圆锥底面圆的半径是______cm.12.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.13.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.14.分母有理化:=_____.15.已知正六边形的边长为10,那么它的外接圆的半径为_____.16.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.17.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有_____个.18.抛物线的顶点坐标是_______.三、解答题(共66分)19.(10分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).20.(6分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.21.(6分)如图是由6个形状、大小完全相同的小矩形组成的,小矩形的顶点称为格点.已知小矩形较短边长为1,的顶点都在格点上.(1)用无刻度的直尺作图:找出格点,连接,使;(2)在(1)的条件下,连接,求的值.22.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y。(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.23.(8分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.24.(8分)解方程:x2-5=4x.25.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.26.(10分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【分析】根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体即可.【详解】选项A、C、D中,小圆的周长和扇形的弧长都不相等,故不能配成一个圆锥体,只有B符合条件.故选B.【点睛】本题考查了学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4、D【解析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、C【解析】试题分析:根据勾股定理求出AC的长,进而得出点B,C,D与⊙A的位置关系.解:连接AC,∵AB=3cm,AD=4cm,∴AC=5cm,∵AB=3<4,AD=4=4,AC=5>4,∴点B在⊙A内,点D在⊙A上,点C在⊙A外.故选C.考点:点与圆的位置关系.6、B【解析】试题解析:∵2x=5y,∴.故选B.7、C【解析】解:cosA=,故选C.8、D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.9、A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴,∵AD=4,DB=2,∴,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.10、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每小题3分,共24分)11、【分析】把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得:r=cm,故答案为.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.12、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.13、1【解析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=1,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【详解】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×1=1,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为1,故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.14、+.【解析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】解:==+.故答案为+.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.15、1【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为1的正六边形可以分成六个边长为1的正三角形,∴外接圆半径是1,故答案为:1.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.16、1.【分析】根据圆周角定理进行分析可得到答案.【详解】解:∵∠BAC=∠BOC,∠ACB=∠AOB,∵∠BOC=2∠AOB,∴∠ACB=∠BAC=1°.故答案为1.考点:圆周角定理.17、1【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以==,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④根据△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCDS四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故④正确.【详解】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴==,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∴S△AEF=S矩形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故④正确;故答案为:1.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线,根据相似三角形表示出图形面积之间关系是解题的关键.18、(5,3)【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较简单.三、解答题(共66分)19、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图.20、见解析【分析】根据题意(将绕点逆时针旋转即可画出图形;【详解】解:如图所示,即为所求.【点睛】此题考查了旋转变换.注意抓住旋转中心与旋转方向是关键.21、(1)答案见解析;(2).【分析】(1)把一条直尺边与直线AC重合,沿着直线AC移动直尺,直到格点在另一直角边上,即为找出格点,连接;(2)连接BD,根据勾股定理分别求出BD和AB的长度,从而求的值.【详解】(1)如图,(2)如图,连接,连接BD.∵,,∴,.易知,,∴,,∴,∴.【点睛】本题考查了几何作图以及三角函数的应用,掌握勾股定理求出对应边长代入三角函数是解题的关键.22、(1)13;(2)不公平,规则见解析【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再得出得点(x,y)在函数y=-x+5的图象上的情况,利用概率公式即可求得答案;
(2)首先分别求得x、y满足xy>6则小明胜,x、y满足xy<6则小红胜的概率,比较概率大小,即可得这个游戏是否公平;公平的游戏规则:只要概率相等即可.【详解】(1)画树状图得:∵共有12种等可能的结果,其中在函数y=−x+5的图象上的有4种:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=−x+5的图象上的概率为:412(3)这个游戏不公平.理由:∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.∴P(小明胜)=412=13,P(∴这个游戏不公平。公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.【点睛】考查游戏公平性,一次函数图象上点的坐标特征,列表法与树状图法,掌握概率=所求情况数与总情况数之比是解题的关键.23、(1)证明见解析;(2)①四边形是矩形.理由见解析;②.【分析】(1)根据,得到,,再证,方法一:通过证明,,从而四边形是平行四边形,,所以为矩形.方法二:证明方法三:证,,.【详解】(1)∵,∴,.∴,,即..∴.(2)①四边形是矩形.理由如下:方法一:由(1)知,.∴.∵,∴.∴.∴.∵,∴,.∴,,即.∴.∴.∵.∴.∴.∴.∴.∴四边形是平行四边形.∵,,点共线,∴.∴四边形是矩形.方法二:如图由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴.∴.∴.∵,∴,即.∴.∵,∴,∴,,即.∴,∴.∵,,点共线,∴.∴,.∴,即.∴.∵,,∴四边形是矩形.方法三:由(1)知,.∴.∵,∴.∴.∴.由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴,∴.∴.∵,∴,即.∴.∵,∴.∴四边形是矩形.②【点睛】本题主要考查了相似三角形的性质以及矩形的性质.24、x1=5,x2=﹣1.【解析】试题分析:移项后,用因式分解法解答即可.试题解析:解:∵x2﹣5=4x,∴x2﹣4x﹣5=0,∴(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年张家界大客车从业资格证考试
- 2024年郑州客运证模拟考试题库
- 2024年海东客运上岗证考试题库
- 吉首大学《管理咨询》2021-2022学年第一学期期末试卷
- 《机械设计基础》-试卷7
- 吉林艺术学院《唐楷与魏碑》2021-2022学年第一学期期末试卷
- 2024年供应链资金合同范本
- 吉林师范大学《中学历史课堂教学艺术》2021-2022学年第一学期期末试卷
- 吉林师范大学《艺术工程投标流程技巧与劳动实践技能》2021-2022学年第一学期期末试卷
- 吉林师范大学《西方文化史》2021-2022学年第一学期期末试卷
- 数字信号处理大作业
- 公路管理工作常见五大诉讼风险及防范
- 公安局市人大代表履职情况报告
- 探析高校图书馆文创产品开发与推广-以清华大学图书馆为例
- 课题结题成果鉴定书.doc
- 大江公司高浓度磷复肥工程可行性研究报告(优秀可研报告)
- 修旧利废实施方案
- 带轴间差速器地分动器特性分析报告材料
- 急诊科护理质量控制措施
- [复习考试资料大全]事业单位考试题库:乡村振兴试题及答案
- 如何做好群团工作
评论
0/150
提交评论