【最新范文】电动力学简答题参考答案_第1页
【最新范文】电动力学简答题参考答案_第2页
【最新范文】电动力学简答题参考答案_第3页
【最新范文】电动力学简答题参考答案_第4页
【最新范文】电动力学简答题参考答案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《电动力学》简答题参考答案.分别写出电流的连续性方程的微分形式与积分形式,弁简单说明它的物理意义。解答:电流的连续性方程的微分形式为0Jt?/0///KKvp??+=?K。其积分形式为?/0///KKv电流的连续性方程实际上就是电荷守恒定律的公式表示形式,它表示:当某区域内电荷减少时,是因为有电荷从该区域表面流出的缘故;相反,当某区域内电荷增加时,是因为有电荷通过该区域的表面流入的缘故。2.写出麦克斯韦方程组,弁对每一个方程用一句话概括其物理意义。解答:(1)fD??=K电荷是电场的源;(2)BEt??X=-?KK变化的磁场产生电场;(3)0B??=K磁场是无源场(4)fDHJt??X=+?KKK传导电流以及变化的电场产生磁场。.麦克斯韦方程组中的电场与磁场是否对称?为什么?解答:麦克斯韦方程组中的电场与磁场弁不对称,因为电场是有源场,电荷是电场的源,而磁场是无源场,不存在磁荷。.一个空间矢量场AK,给出哪些条件能把它唯一确定?解答:由矢量场的唯一性定理:(1)位于空间有限区域内的矢量场,当它的散度,旋度以及它在区域边界上的场分布给定之后,该矢量场就被唯一确定;(2)对于无限大空间,如果矢量在无限远处减少至零,则该矢量由其散度和旋度唯一确定。.写出极化电流与极化强度、磁化电流密度与磁化强度之间的关系式。解答:极化电流与极化强度之间的关系式为PPJt?=?KK;磁化电流密度与磁化强度之间的关系式为MJM=?XKK。.简述公式dddddVVwVfVSt(T-=?+?///vKKKK物理意义。解答:dddVwVt-表妹单位时间区域V内电磁场能量的减少,dVfV?/vKK表示单位时间电磁场对该区域的电荷系统所作的功,dS?/KKv表示单位时间流出该区域的能量。所以,此公式的物理意义为:单位时间区域V内电磁场能量的减少,等于单位时间电磁场对该区域的电荷系统所作的功与流出该区域的能量之和。它实际上就是区域V内电磁场能量守恒的表达式。.简述介质中静电场的唯一性定理。解答:介质中静电场的唯一性定理为设区域V内给定自由电荷分布()xpK,在V的边界S上给定(1)电势值S?;或者(2)电势的法线方向导数Sn???的值则区域V内电场唯一确定。.写出无界空间、上半空间以及球外空间在第一类边值条件下的格林函数。解答:在第一类边值条件下的格林函数(1)无界空间为:(,)Gxx'二KK(2)上半空间为:4万q4(工一一/广;(*'—『+(二一:’)二/r+tY-vfr+(^-z)~+(v-yfyIz+zr)2].、f1iLVf方■,砂-2RR5e|,腔+入2*/心544万品J(工―,)2+(y-y夕+(J-/V|正-Y「+(_v-百十仁一[7<JV-/>a+(J-Vr)2+(z+zr)"Jr,-RD—ZRRcl由。|次+42*,心5401(,)4Gxx劣?J=-KK⑶球外空间为:01(,)4Gxx??£'=-KK4啊J('一"「「(v-。『+(j-:个+Q.Y-]厅+11-J):|Jo:__g[+史_v,4仁+//48-R"-"Kcor©4段“十(¥一,'R+—1aL■/r十(》-]厅十仁一-广卜5一+u-疗+仁+1个-Wuose|"+M-27?%m§d,20RbR=o.写出电偶极矩和电四极矩的定义式。解答:电偶极矩的定义式为:iiipqx'=EKKo电四极矩的定义式为:3iiiiDqxx''=EKKlKK()iiiiiiDqxxxxE??''???=-KKKKKKKK。.设体系的电荷密度分布为()xpK,则该体系在外场e?中的能量是多少?解答:电荷密度分布为()xpK勺体系在外场e?中的能量为:deWV?pQ=/积分区域为电荷体系()xp的分布区域。.写出麦克斯韦方程组的积分形式,弁写出其对应的在介质分界面上的表达形式(即边值关系)。解答:麦克斯韦方程组的积分形式为)dfSDSQ?=/KKv;(2)ddddLSElBSt?=-?//KKKKv;)d0SBS?=/KKv;(4)ddddfLSHlIDSt?=+?//KKKKVo其对应的在介质分界面上的表达形式(即边值关系)为(1)21()nfeDD?-冰KK;(2)21()0neEEx-=KKK;(3)21()0neBB?-=KKK;⑷21()neHHaX-=KKKK12.简述引入磁标势的基本条件,弁写出磁标势所满足的泊松方程。解答:引入磁标势的基本条件为(1)所讨论的区域中没有电流分布;(2)所讨论的区域为单连通区域。磁标势所满足的泊松方程为20/mm?p?=-,其中0mMp^=??K。.写出磁偶极矩的定义式以及它所产生的矢势与标势的表达式。解答:磁偶极矩的定义式为:1()d2mxJV'=x/°KKK小电流分布在远处产生的矢势的多极展开式中,其一级近似的表达式为(1)034mRAR…x=KKK项常称为磁偶极矩产生的矢势。磁偶极矩产生的标势为(1)314mmRR?%?=KKo.平面电磁波中,电场和磁场的能量密度各为多少?电场能与磁场能相等吗?解答:平面电磁波中,电场和磁场的能量密度各为212E矫口212B它们是相等的,即空间电磁场能量密度为:221wEB&H==.简述全反射现象。解答:由折射定律,sinsin。峰12…领12nn>)时,折射角总是大于入射角,当入射角21arcsin(/)nn曲折射角o908'此时若再继续增加入射角,将没有电磁波被折射而进入电容率为2£的介质中,这种现象称为全反射现象。.在导体内部,电荷密度随时间衰减的表达式是什么?衰减的特征时间如何定义?特征时间的表达式是什么?解答:在导体内部,电荷密度随时间衰减的表达式为0()tte(T£PP—-衰减的特征时间定义为电荷密度衰减到原来的1/e所需要的时间。由此定义得特征时间的表达式:£T(T.什么是穿透深度?电磁波从介质垂直入射到导体时,穿透深度是多少?良导体的条件是什么?解答:当电磁波从介质入射到导体时,波幅降至入射波幅值的1/e时的深度,称为穿透深度。电磁波从介质垂直入射到导体时,穿透深度为8=II2II一.।\邛oO良导体的条件是:1(T3£。18.简述趋肤效应。解答:由于穿透深度与电导率及频率的平方根成反比,对于高频电磁波,电磁场以及和它相互作用的高频电流仅集中于表面很薄一层内,这种现象称为趋肤效应。.谐振腔内亥姆霍兹方程的本征解的表达式是什么?解答:谐振腔内亥姆霍兹方程的本征解的表达式是11cossinsinxyzEAkxkykz=22sincossinxyzEAkxkykz=33sinsincosxyzEAkxkykz=其中1xmkL兀=,2ynkL兀=,3zpkL冗二.若电磁波在一个宽为a,高为b的无穷长矩形波导管中传播,其截止角频率是多少?解答:当电磁波在一个宽为a,高为b的无穷长矩形波导管中传播时,对于给定的一组(,)mn值,其截止角频率为kJAhY(ny市向+用,cmn3二.写出电磁场矢势与标势中的库仑规范与洛仑兹规范条件。解答:电磁场矢势与标势中库仑规范条件为0A??=K;洛仑兹规范条件为At?£??=-?K。.写出在洛仑兹规范下的标势与矢势方程(即达朗贝尔方程)。解答:在洛仑兹规范下的标势与矢势方程(即达朗贝尔方程)分别为222t?p?[i£?£-=-?222AAJt[i???=-?KKK.写出真空中标势与矢势的达朗贝尔方程的推迟势解。解答:真空中标势与矢势的达朗贝尔方程的推迟势解分别为0,1(,)d4rxtcxtVr??p'?????◎'=/KK0,(,)d4rJxtcAxtVr兀??’????'=fKKKK.简述对小电流分布区域在远场区的矢势进行多极展开的基本条件。解答:对小电流分布区域在远场区的矢势进行多极展开的基本条件为(1)电流分布线度远小于辐射电磁波的波长,即l入;(2)电流分布线度远小于小电流分布区域到场点的距离,即lr;(3)辐射电磁波的波长远小于小电流分布区域到场点的距离,即r入。.写出电磁波动量密度的表达式,以及它与能流密度的关系式,独立的静电场或静磁场存在动量吗?解答:电磁波动量密度的表达式为0gEB£=XKKK它与能流密度的关系式为:0021gSSc£==KKK虫立的静电场或静磁场弁不存在动量,因为对于独立的静电场或静磁场来说,它没有能量的传输,坡印亭矢量0s=K,所以动量密度也就等于.简述狭义相对论中的两条基本假设。解答:狭义相对论中的两条基本假设为(1)相对性原理:物理定律在所有的惯性系中都具有相同的表达形式,即所有的惯性参考系都是等价的;(2)光速不变原理:真空中的光速是常量,它与光源或观察者的运动无关,即不依赖于惯性系的选择。.'髡标系以速度v相对2坐标系沿x轴正向运动,写出从2系到’系的洛仑兹变换公式。解答:洛仑兹变换公式为()xxt丫'="v,yy'=,zz'=2ttxc必?’今???v.'饰系以速度v相对2坐标系沿x轴正向运动,在2系中两事件的时间与空间间隔分别为t厘口xA,在’系中两事件的时间与空间间隔分别是多少?解答:由洛仑兹变换公式,在’系中两事件的时间与空间间隔分别是2ttxc??YA=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论